Biosurfactants pp 261-280 | Cite as

Synthesis of Biosurfactants and Their Advantages to Microorganisms and Mankind

  • Swaranjit Singh Cameotra
  • Randhir S. Makkar
  • Jasminder Kaur
  • S. K. Mehta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)

Abstract

Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures—lipopeptides, glycolipids, neutral lipids and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. The low water solubility of these hydrophobic compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential applications in bioremediation. Not only are the biosurfactants useful in a variety of industrial processes, they are also of vital importance to the microbes in adhesion, emulsification, bioavailability, desorption and defense strategy. These interesting facts are discussed in this chapter.

Keywords

PAHs Pseudomonas Streptomyces Microbe PCBs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deleu M, Paquot M. From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie 2004; 7(6–7):641–646.CrossRefGoogle Scholar
  2. 2.
    Mulligan CN. Environmental applications for biosurfactants. Environ Pollut 2005; 133(2):183–198.PubMedCrossRefGoogle Scholar
  3. 3.
    Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 1997; 61(1):47–64.PubMedGoogle Scholar
  4. 4.
    Cameotra S, Makkar R. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 1998; 50(5):520–529.PubMedCrossRefGoogle Scholar
  5. 5.
    Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 2000; 53(5):495–508.PubMedCrossRefGoogle Scholar
  6. 6.
    Cameotra SS, Bollag J-M. Biosurfactant-Enhanced Bioremediation of Polycyclic Aromatic Hydrocarbons. Critical Reviews in Environmental Science and Technology 2003; 30(2):111–126.CrossRefGoogle Scholar
  7. 7.
    Lang S. Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 2002; 7(1–2):12–20.CrossRefGoogle Scholar
  8. 8.
    Maier RM, Soberon-Chavez G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 2000; 54(5):625–633.PubMedCrossRefGoogle Scholar
  9. 9.
    Makkar RS, Rockne KJ. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22(10):2280–2292.Google Scholar
  10. 10.
    Singh P, Cameotra SS. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 2004; 22(3):142–146.PubMedCrossRefGoogle Scholar
  11. 11.
    Georgiou G, Lin SC, Sharma MM. Surface-active compounds from microorganisms. Biotechnology (NY) 1992; 10(1):60–65.CrossRefGoogle Scholar
  12. 12.
    Holmberg K. Natural surfactants. Curr Opin Colloid Interface Sci 2001; 6:148–159.CrossRefGoogle Scholar
  13. 13.
    Mulligan CN, Eftekhari F. Remediation with surfactant foam of PCP-contaminated soil. Engineering Geology 2003; 70(3–4):269–279.CrossRefGoogle Scholar
  14. 14.
    Mulligan CN, Yong RN. Natural attenuation of contaminated soils. Environ Int 2004/6 2004; 30(4):587–601.PubMedCrossRefGoogle Scholar
  15. 15.
    Ron EZ, Rosenberg E. Natural roles of biosurfactants. Environ Microbiol 2001; 3(4):229–236.PubMedCrossRefGoogle Scholar
  16. 16.
    Maier RM. Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 2003; 52:101–121.PubMedCrossRefGoogle Scholar
  17. 17.
    Bodour AA, Drees KP, Maier RM. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils. Appl Environ Microbiol 2003; 69(6):3280–3287.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosenberg E. CRC Crit Rev Biotechnol 1986; 3:109.CrossRefGoogle Scholar
  19. 19.
    Rosenberg E, Ron EZ. Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 1997; 8(3):313–316.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenberg E, Ron EZ. High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 1999; 52(2):154–162.PubMedCrossRefGoogle Scholar
  21. 21.
    Neu TR. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 1996; 60(1):151–166.PubMedGoogle Scholar
  22. 22.
    Zhang Y, Maier WJ, Miller RM. Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environ Sci Technol 1997; 31(8):2211–2217.CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Miller RM. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 1994; 60(6):2101–2106.PubMedGoogle Scholar
  24. 24.
    Rosenberg E. Exploiting microbial growth on hydrocarbons—new markets. Trends Biotechnol 1993; 11(10):419–424.CrossRefGoogle Scholar
  25. 25.
    Rosenberg E, Rubinovitz C, Gottlieb A et al. Production of biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 1988; 54:317–322.PubMedGoogle Scholar
  26. 26.
    Toren A, Navon-Venezia S, Ron E et al. Emulsifying Activities of Purified Alasan Proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 2001; 67(3):1102–1106.PubMedCrossRefGoogle Scholar
  27. 27.
    Hua Z, Chen J, Lun S et al. Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res 2003; 37(17):4143–4150.PubMedCrossRefGoogle Scholar
  28. 28.
    Deziel E, Paquette G, Villemur R et al. Biosurfactant Production by a Soil Pseudomonas Strain Growing on Polycyclic Aromatic Hydrocarbons. Appl Environ Microbiol 1996; 62(6):1908–1912.PubMedGoogle Scholar
  29. 29.
    Edwards DA, Luthy RG, Liu Z. Solubilization of polycyclic aromatic hydrocarbons in micellar non-ionic surfactant solutions. Environ Sci Technol 1991; 25(1):127–133.CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Miller R. Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes. Appl Environ Microbiol 1995; 61(6):2247–2251.PubMedGoogle Scholar
  31. 31.
    Barkay T, Navon-Venezia S, Ron EZ et al. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 1999; 65(6):2697–2702.PubMedGoogle Scholar
  32. 32.
    Jordan RN, Nichols EP, Cunningham AB. The role of (bio) surfactant sorption in promoting the bioavailability of nutrients localized at the solid-water interface. Water Sci Technol 1999; 39(7):91–98.CrossRefGoogle Scholar
  33. 33.
    Chen G, Qiao M, Zhang H et al. Bacterial desorption in water-saturated porous media in the presence of rhamnolipid biosurfactant. Res Microbiol 2004; 155(8):655–661.PubMedCrossRefGoogle Scholar
  34. 34.
    Puchkov EO, Zahringer U, Lindner B et al. The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. Biochimica et Biophysica Acta (BBA)—Biomembranes 2002; 1558(2):161–170.CrossRefGoogle Scholar
  35. 35.
    de Souza JT, de Boer M, de Waard P et al. Biochemical, Genetic and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens. Appl Environ Microbiol 2003; 69(12):7161–7172.PubMedCrossRefGoogle Scholar
  36. 36.
    Nielsen TH, Sorensen J. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 2003; 69(2):861–868.PubMedCrossRefGoogle Scholar
  37. 37.
    Cooper DG. Biosurfactants. Microbiol Sci 1986; 3(5):145–149.PubMedGoogle Scholar
  38. 38.
    Oberbremer A, Muller-Hurtig R, Wagner F. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 1990; 32(4):485–489.PubMedCrossRefGoogle Scholar
  39. 39.
    Chayabutra C, Wu J, Ju LK. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 2001; 72(1):25–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Wick LY, Ruiz de Munain A, Springael D et al. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 2002; 58(3):378–385.PubMedCrossRefGoogle Scholar
  41. 41.
    Mulligan CN, Mahmourides G, Gibbs BF. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol 1989; 12(3–4):199–209.CrossRefGoogle Scholar
  42. 42.
    Robert M, Mercade M, Bosch M et al. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44Ti. Biotechnol Lett 1989; 11:871–874.CrossRefGoogle Scholar
  43. 43.
    Symmank H, Franke P, Saenger W et al. Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 2002; 15(11):913–921.PubMedCrossRefGoogle Scholar
  44. 44.
    Poremba K, Gunkel W, Lang S et al. Marine biosurfactants, III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z Naturforsch (C) 1991; 46(3–4):210–216.Google Scholar
  45. 45.
    Poremba K. Influence of synthetic and biogenic surfactants on the toxicity of water-soluble fractions of hydrocarbons in sea water determined with the bioluminescence inhibition test. Environ Pollut 1993; 80(1):25–29.PubMedCrossRefGoogle Scholar
  46. 46.
    Kanga SA, Bonner JS, Page CA et al. Solubilization of Naphthalene and Methyl-Substituted Naphthalenes from Crude Oil Using Biosurfactants. Environ Sci Technol 1997; 31(2):556–561.CrossRefGoogle Scholar
  47. 47.
    Edwards KR, Lepo JE, Lewis MA. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull 2003; 46(10):1309–1316.PubMedCrossRefGoogle Scholar
  48. 48.
    Banat IM. Biosurfactants, more in demand than ever: Les biosurfactants, plus que jamais sollicites. Biofutur 2000; 198:44–47.CrossRefGoogle Scholar
  49. 49.
    Lang S, Philp JC. Surface-active lipids in Rhodococci. Antonie Van Leeuwenhoek 1998; 74(1–3):59–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Lang S, Wullbrandt D. Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 1999; 51(1):22–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Rau U, Hammen S, Heckmann R et al. Sophorolipids: a source for novel compounds. Industrial Crops and Products 2001; 13(2):85–92.CrossRefGoogle Scholar
  52. 52.
    Bonmatin JM, Laprevote O, Peypoux F. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 2003; 6(6):541–556.PubMedGoogle Scholar
  53. 53.
    Cameotra SS, Makkar RS. Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 2004; 7(3):262–266.PubMedCrossRefGoogle Scholar
  54. 54.
    Navon-Venezia S, Zosim Z, Gottlieb A et al. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 1995; 61(9):3240–3244.PubMedGoogle Scholar
  55. 55.
    Fiechter A. Biosurfactants: moving towards industrial application. Trends Biotechnol 1992; 10:208–217.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Miller RM. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 1992; 58(10):3276–3282.PubMedGoogle Scholar
  57. 57.
    Mulligan C, Yong R, Gibbs B. Heavy metal removal from sediments by biosurfactants. J Hazard Mater 2001; 85(1–2):111–125.PubMedCrossRefGoogle Scholar
  58. 58.
    Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology 2001; 60(1–4):193–207.CrossRefGoogle Scholar
  59. 59.
    Kitamoto D, Isoda H, Nakahara T. Functions and potential applications of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers. J Biosci Bioeng 2002; 94(3):187–201.PubMedGoogle Scholar
  60. 60.
    Makkar RS, Cameotra SS. Synthesis of Enhanced biosurfactant by Bacillus subtilis MTCC 2423 at 45°C by Foam Fractionation. Journal of Surfactants and Detergents 2001; 4:355–357.CrossRefGoogle Scholar
  61. 61.
    Noordman WH, Bruining J-W, Wietzes P et al. Facilitated transport of a PAH mixture by a rhamnolipid biosurfactant in porous silica matrices. J Contam Hydrol 2000; 44(2):119–140.CrossRefGoogle Scholar
  62. 62.
    Noordman WH, Janssen DB. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 2002; 68(9):4502–4508.PubMedCrossRefGoogle Scholar
  63. 63.
    Kingston PF. Long-term Environmental Impact of Oil Spills. Spill Science and Technology Bulletin 2002; 7(1–2):53–61.CrossRefGoogle Scholar
  64. 64.
    Page DS, Boehm PD, Brown JS et al. Mussels document loss of bioavailable polycyclic aromatic hydrocarbons and the return to baseline conditions for oiled shorelines in Prince William Sound, Alaska. Mar Environ Res 2005; 60(4):422–436.PubMedCrossRefGoogle Scholar
  65. 65.
    Wiens JA. Recovery of seabirds following the Exxon Valdez oil spill: an overview. Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters. ASTM Special Technical Publication 1995:854–893.Google Scholar
  66. 66.
    Dauvin J-C. The fine sand Abra alba community of the bay of morlaix twenty years after the Amoco Cadiz oil spill. Mar Pollut Bull 1998; 36(9):669–676.CrossRefGoogle Scholar
  67. 67.
    Urum K, Pekdemir T. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 2004; 57(9):1139–1150.PubMedCrossRefGoogle Scholar
  68. 68.
    Urum K, Pekdemir T, Ross D et al. Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 2005; 60(3):334–343.PubMedCrossRefGoogle Scholar
  69. 69.
    Wei QF, Mather RR, Fotheringham AF. Oil removal from used sorbents using a biosurfactant. Bioresour Technol 2005; 96(3):331–334.PubMedCrossRefGoogle Scholar
  70. 70.
    Harvey S, Elashvili I, Valdes JJ et al. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology 1990; 8(3):228–230.PubMedCrossRefGoogle Scholar
  71. 71.
    DeschÃanes L, Lafrance P, Villeneuve J-P et al. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 1996; 46(5–6):638–646.CrossRefGoogle Scholar
  72. 72.
    Munoz R, Guieysse B, Mattiasson B. Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 2003; 61(3):261–267.PubMedGoogle Scholar
  73. 73.
    Kuyukina MS, Ivshina IB, Makarov SO et al. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 2005; 31(2):155–161.PubMedCrossRefGoogle Scholar
  74. 74.
    Van Hamme JD, Singh A, Ward OP. Recent Advances in Petroleum Microbiology. Microbiol Mol Biol Rev 2003; 67(4):503–549.PubMedCrossRefGoogle Scholar
  75. 75.
    Khire JM, Khan MI. Microbially enhanced oil recovery (MEOR). Part 2. Microbes and the subsurface environment for MEOR. Enzyme Microb Technol 1994/3 1994; 16(3):258–259.CrossRefGoogle Scholar
  76. 76.
    Abu Ruwaida A, Banat I, Hadithirto S et al. Isolation of biosurfactant producing bacteria product characterization and evaluation. Acta Biotechnol 1991; 11:315–324.CrossRefGoogle Scholar
  77. 77.
    Banat I. The Isolation of Thermophilic Biosurfactant producing Bacillus sp. Biotechnol Lett 1993; 15:591–594.CrossRefGoogle Scholar
  78. 78.
    Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001; 5(2):73–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Banat IM. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Fuel and Energy Abstracts 1995; 36(4):290.Google Scholar
  80. 80.
    Khire JM, Khan MI. Microbially enhanced oil recovery (MEOR). Part 1. Importance and mechanism of MEOR. Enzyme Microb Technol 1994; 16(2):170–172.CrossRefGoogle Scholar
  81. 81.
    Yakimov MM, Amro MM, Bock M et al. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. Journal of Petroleum Science and Engineering 1997; 18(1–2):147–160.CrossRefGoogle Scholar
  82. 82.
    Madihah MS, Ariff AB, Akmam FH et al. Hyper-thermophilic fermentative bacteria in Malaysian petroleum reservoirs. Asia-Pacific J Mol Biol Biotechnol 1998; 6:29–37.Google Scholar
  83. 83.
    Al-Maghrabi IMA, Bin Aqil AO, Isla MR et al. Use of thermophilic bacteria for bioremediation of petroleum contaminants. Energy Sources 1999; 21:17–29.CrossRefGoogle Scholar
  84. 84.
    Rahman KS, Banat IM, Thahira J et al. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 2002; 81(1):25–32.PubMedCrossRefGoogle Scholar
  85. 85.
    Rahman KS, Rahman TJ, Kourkoutas Y et al. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 2003; 90(2):159–168.PubMedCrossRefGoogle Scholar
  86. 86.
    Makkar RS, Cameotra SS. Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc ( JACOS) 1997; 74:887–889.CrossRefGoogle Scholar
  87. 87.
    Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 2002; 58(4):428–434.PubMedCrossRefGoogle Scholar
  88. 88.
    Harrad S, Laurie L. Concentrations, sources and temporal trends in atmospheric polycyclic aromatic hydrocarbons in a major conurbation. J Environ Monit 2005; 7(7):722–727.PubMedCrossRefGoogle Scholar
  89. 89.
    Singh P, Cameotra SS. Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 2004; 319(2):291–297.PubMedCrossRefGoogle Scholar
  90. 90.
    Herman DC, Zhang Y, Miller RM. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol 1997; 63(9):3622–3627.PubMedGoogle Scholar
  91. 91.
    Ochoa-Loza FJ, Artiola JF, Maier RM. Stability Constants for the Complexation of Various Metals with a Rhamnolipid Biosurfactant. J Environ Qual 2001; 30(2):479–485.PubMedCrossRefGoogle Scholar
  92. 92.
    Mulligan CN, Kamali M, Gibbs BF. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J Hazard Mater 2004; 110(1–3):77–84.PubMedCrossRefGoogle Scholar
  93. 93.
    Maslin P, Maier RM. Rhamnolipid-Enhanced Mineralization of Phenanthrene in Organic-Metal Cocontaminated Soils. Bioremediat J 2000; 4(4):295–308.CrossRefGoogle Scholar
  94. 94.
    Mulligan CN, Yong RN, Gibbs BF. Removal of Heavy Metals from Contaminated Soil and Sediments Using the Biosurfactant Surfactin. Journal of Soil Contamination 1999; 8(2):231–254.CrossRefGoogle Scholar
  95. 95.
    Mulligan CN, Yong RN, Gibbs BF. Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology 2001; 60(1–4):371–380.CrossRefGoogle Scholar
  96. 96.
    Jeong-Jin H, Seung-Man Y, Choul-Ho L et al. Adsorption of tricarboxylic acid biosurfactant derived from spiculisporic acid on titanium dioxide surface. Colloids Surf B Biointerfaces 1996; 7(5–6):221–233.Google Scholar
  97. 97.
    Finnerty WR. Biosurfactants in environmental biotechnology. Curr Opin Biotechnol 1994; 5(3):291–295.CrossRefGoogle Scholar
  98. 98.
    Inoh Y, Kitamoto D, Hirashima N et al. Biosurfactants of MEL-A Increase Gene Transfection Mediated by Cationic Liposomes. Biochem Biophys Res Commun 2001; 289(1):57–61.PubMedCrossRefGoogle Scholar
  99. 99.
    Inoh Y, Kitamoto D, Hirashima N et al. Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 2004; 94(2–3):423–431.PubMedCrossRefGoogle Scholar
  100. 100.
    Vollenbroich D, Ozel M, Vater J et al. Mechanism of Inactivation of Enveloped Viruses by the Biosurfactant Surfactin from Bacillus subtilis. Biologicals 1997; 25(3):289–297.PubMedCrossRefGoogle Scholar
  101. 101.
    Vollenbroich D, Pauli G, Ozel M et al. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 1997; 63(1):44–49.PubMedGoogle Scholar
  102. 102.
    Lang S, Kaiswela E, F W. Antimicrobial effects of biosurfactants. Fat Sci Technol 1989; 91:363–366.Google Scholar
  103. 103.
    Lang S, Wagner F. Biological Activities of Biosurfactants. New York: Marcel Dekker INc; 1993.Google Scholar
  104. 104.
    Arima K, Kakinuma A, Tamuri G. Surfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis. Isolation, Characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Comm 1968; 31:361–369.CrossRefGoogle Scholar
  105. 105.
    Nir-Paz R, Prevost MC, Nicolas P et al. Susceptibilities of Mycoplasma fermentans and Mycoplasma hyorhinis to membrane-active peptides and enrofloxacin in human tissue cell cultures. Antimicrob Agents Chemother 2002; 46(5):1218–1225.PubMedCrossRefGoogle Scholar
  106. 106.
    Sandrin C, Peypoux F, Michel G. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol Appl Biochem 1990; 12(4):370–375.PubMedGoogle Scholar
  107. 107.
    Naruse N, Tenmyo O, Kobaru S et al. Pumilacidin, a complex of new antiviral antibiotics: production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 1990; 43:267–280.Google Scholar
  108. 108.
    Kitatsuji K, Miyata H, Fukase T. Isolation of microorganisms that lyse filamentous bacteria and characterization of the lytic substance secreted by Bacillus polymyxa. J Ferment Bioeng 1996; 82(4):323–327.CrossRefGoogle Scholar
  109. 109.
    Nielsen TH, Sorensen D, Tobiasen C et al. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 2002; 68(7):3416–3423.PubMedCrossRefGoogle Scholar
  110. 110.
    Andersen JB, Koch B, Nielsen TH et al. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 2003; 149:37–46.PubMedCrossRefGoogle Scholar
  111. 111.
    Gerard J, Lloyd R, Barsby T et al. Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two Pseudomonads isolated from marine habitats. J Nat Prod 1997; 60(3):223–229.PubMedCrossRefGoogle Scholar
  112. 112.
    Abalos A, Pinazo A, Infante MR et al. Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes. Langmuir 2001; 17(5):1367–1371.CrossRefGoogle Scholar
  113. 113.
    Hossain H, Wellensiek H-J, Geyer R et al. Structural analysis of glycolipids from Borrelia burgdorferi. Biochimie 2001; 83(7):683–692.PubMedCrossRefGoogle Scholar
  114. 114.
    Golubev WI, Kulakovskaya TV, Golubeva EW. The yeast Pseudozyma fusiformata VKM Y-2821 producing an antifungal glycolipid. Microbiol 2001; 70:553–556.CrossRefGoogle Scholar
  115. 115.
    Kulakovskaya TV, Kulakovskaya EV, Golubev WI. ATP leakage from yeast cells treated by extracellular glycolipids of Pseudozyma fusiformata. FEMS Yeast Research 2003; 3(4):401–404.PubMedCrossRefGoogle Scholar
  116. 116.
    Reid G, Bruce AW, Fraser N et al. Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 2001; 30(1):49–52.PubMedCrossRefGoogle Scholar
  117. 117.
    Reid G, Heinemann C, Velraeds M et al. Biosurfactants produced by Lactobacillus. Methods Enzymol 1999; 310:426–433.PubMedCrossRefGoogle Scholar
  118. 118.
    Gan BS, Kim J, Reid G et al. Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J Infect Dis 2002; 185(9):1369–1372.PubMedCrossRefGoogle Scholar
  119. 119.
    Reid G, Charbonneau D, Erb J et al. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol Med Microbiol 2003; 35(2):131–134.PubMedCrossRefGoogle Scholar
  120. 120.
    Rastall RA, Gibson GR, Gill HS et al. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol 2005; 52(2):145–152.PubMedCrossRefGoogle Scholar
  121. 121.
    Reid G. The Scientific Basis for Probiotic Strains of Lactobacillus. Appl Environ Microbiol 1999; 65(9):3763–3766.PubMedGoogle Scholar
  122. 122.
    Reid G. Probiotic agents to protect the urogenital tract against infection. Am J Clin Nutr 2001; 73(2 Suppl):437S–443S.PubMedGoogle Scholar
  123. 123.
    Velraeds MM, van de Belt-Gritter B, Busscher HJ et al. Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli—a teleologic approach. World J Urol 2000; 18(6):422–426.PubMedCrossRefGoogle Scholar
  124. 124.
    van Hoogmoed CG, van der Mei HC, Busscher HJ. The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria. Biofouling 2004; 20(6):261–267.PubMedCrossRefGoogle Scholar
  125. 125.
    Meylheuc T, van Oss C, Bellon-Fontaine M. Adsorption of biosurfactant on solid surfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28. J Appl Microbiol 2001; 91(5):822–832.PubMedCrossRefGoogle Scholar
  126. 126.
    Rodrigues L, Van Der Mei H, Teixeira JA et al. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol 2004.Google Scholar
  127. 127.
    Batrakov SG, Rodionova TA, Esipov SE et al. A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 2003; 1634(3):107–115.CrossRefGoogle Scholar
  128. 128.
    Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S et al. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 2001; 98(20):11621–11626.PubMedCrossRefGoogle Scholar
  129. 129.
    Richter M, Willey JM, Su(ss)muth R et al. Streptofactin, a novel biosurfactant with aerial mycelium inducing activity from Streptomyces tendae Tu 901/8c. FEMS Microbiol Lett 1998; 163(2):165–171.Google Scholar
  130. 130.
    Mata-Sandoval JC, Karns J, Torrents A. Influence of rhamnolipids and triton X-100 on the desorption of pesticides from soils. Environ Sci Technol 2002; 36(21):4669–4675.PubMedCrossRefGoogle Scholar
  131. 131.
    Awashti N, Kumar A, Makkar R et al. Enhanced Biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. J Environ Sci Health 1999; 34:793–803.CrossRefGoogle Scholar
  132. 132.
    Cooper DG, Pillon DW, Mulligan CN et al. Biological additives for improved mechanical dewatering of fuel-grade peat. Fuel 1986; 65(2):255–259.CrossRefGoogle Scholar
  133. 133.
    Ahn C-Y, Joung S-H, Jeon J-W et al. Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1. Biotechnol Lett 2003; 25(14):1137–1142.PubMedCrossRefGoogle Scholar
  134. 134.
    Wang X, Gong L, Liang S et al. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 2005; 4(2):433–443.CrossRefGoogle Scholar
  135. 135.
    Souto GI, Correa OS, Montecchia MS et al. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J Appl Microbiol 2004; 97(6):1247–1256.PubMedCrossRefGoogle Scholar
  136. 136.
    Assie LK, Deleu M, Arnaud L et al. Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 2002; 67(3):647–655.PubMedGoogle Scholar
  137. 137.
    Ongena M, Duby Fl, Jourdan E et al. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 2005; 67(5):692–698.PubMedCrossRefGoogle Scholar
  138. 138.
    Toure Y, Ongena M, Jacques P et al. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 2004; 96(5):1151–1160.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Swaranjit Singh Cameotra
    • 1
  • Randhir S. Makkar
    • 2
  • Jasminder Kaur
    • 3
  • S. K. Mehta
    • 4
  1. 1.Institute of Microbial Technology and Microbial Type Culture Collection and Gene BankInternational Development AssociationChandigarhIndia
  2. 2.Department of Developmental Neurogenetics Children Research InstituteMedical University of South CarolinaCharlestonUSA
  3. 3.Home ScienceChandigarh Admn.ChandigarhIndia
  4. 4.Center of Advanced Studies in Chemistry Department of ChemistryPanjab UniversityChandigarhIndia

Personalised recommendations