Molecular Genetics of Biosurfactant Synthesis in Microorganisms

  • Surekha K. Satpute
  • Smita S. Bhuyan
  • Karishma R. Pardesi
  • Shilpa S. Mujumdar
  • Prashant K. Dhakephalkar
  • Ashvini M. Shete
  • Balu A. Chopade
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)

Abstract

Biosurfactant (BS)/bioemulsifier (BE) produced by varied microorganisms exemplify immense structural/functional diversity and consequently signify the involvement of particular molecular machinery in their biosynthesis. The present chapter aims to compile information on molecular genetics of BS/BE production in microorganisms. Polymer synthesis in Acinetobacter species is controlled by an intricate operon system and its further excretion being controlled by enzymes. Quorum sensing system (QSS) plays a fundamental role in rhamnolipid and surfactin synthesis. Depending upon the cell density, signal molecules (autoinducers) of regulatory pathways accomplish the biosynthesis of BS. The regulation of serrawettin production by Serratia is believed to be through non ribosomal peptide synthetases (NRPSs) and N-acylhomoserine lactones (AHLs) encoded by QSS located on mobile transposon. This regulation is under positive as well as negative control of QSS operon products. In case of yeast and fungi, glycolipid precursor production is catalyzed by genes that encode enzyme cytochrome P450 monooxygenase. BS/BE production is dictated by genes present on the chromosomes. This chapter also gives a glimpse of recent biotechnological developments which helped to realize molecular genetics of BS/BE production in microorganisms. Hyper-producing recombinants as well as mutant strains have been constructed successfully to improve the yield and quality of BS/BE. Thus promising biotechnological advances have expanded the applicability of BS/BE in therapeutics, cosmetics, agriculture, food, beverages and bioremediation etc. In brief, our knowledge on genetics of BS/BE production in prokaryotes is extensive as compared to yeast and fungi. Meticulous and concerted study will lead to an understanding of the molecular phenomena in unexplored microbes. In addition to this, recent promising advances will facilitate in broadening applications of BS/BE to diverse fields. Over the decades, valuable information on molecular genetics of BS/BE has been generated and this strong foundation would facilitate application oriented output of the surfactant industry and broaden its use in diverse fields. To accomplish our objectives, interaction among experts from diverse fields likes microbiology, physiology, biochemistry, molecular biology and genetics is indispensable.

Keywords

Burk Hold Eria Oligopeptide Diamino Trisaccharide Glycoli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patel P, Desai AJ. Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Lett Appl Microbiol 1997; 25:91–94CrossRefGoogle Scholar
  2. 2.
    Makkar RS, Comeotra SS. Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc 1997; 74:887–889CrossRefGoogle Scholar
  3. 3.
    Raza ZA, Khan MS, Khalid ZM. Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J Environ Sci Health Part A 2007; 42:73–80Google Scholar
  4. 4.
    Rodrigues L, Banat IM, Teixeira J et al. Biosurfactants: potential applications in medicine. J Antimicrobial Chemotherapy 2006; 57:609–618CrossRefGoogle Scholar
  5. 5.
    Soberon-Chavez G, Aguirre-Ramirez M, Ordonez L. Is Pseudomonas aeruginosa only “Sensing Quorum”? Crit Rev Microbiol 2005; 31(3):171–182PubMedCrossRefGoogle Scholar
  6. 6.
    Gautam KK, Tyagi VK. Microbial surfactants: A review. J Oleo Sci 2006; 55(4):155–166Google Scholar
  7. 7.
    Kokare CR, Kadam SS, Mahadik KR et al. Studies on bioemulsifier production from marine Streptomyces sp. S1 Indian J Biotechnol 2007; 6(1):78–84Google Scholar
  8. 8.
    Satpute SK, Bhawsar BD, Dhakephalkar PK et al. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Marine Sciences 2008; 37(3):243–250Google Scholar
  9. 9.
    Satpute SK, Dhakephalkar PK, Chopade BA. Biosurfactants and bioemulsifiers in hydrocarbon biodegradation and spilled oil bioremediation. Indo-Italian brain storming workshop on technology transfer for industrial applications of novel methods and materials for environmental problem 2005; 1–18Google Scholar
  10. 10.
    Fiechter A. Biosurfactant moving towards industrial applications. Trends Biotechnol 1992; 10:208–217PubMedCrossRefGoogle Scholar
  11. 11.
    Desai AJ, Patel RN. Advances in biosurfactant production: A step forward to commercial applications J Sci Ind Res 1994; 53:619–629Google Scholar
  12. 12.
    Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 1997; 61(1):47–64PubMedGoogle Scholar
  13. 13.
    Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 1999; 51:553–563PubMedCrossRefGoogle Scholar
  14. 14.
    Lang S, Wullbrandt D. Rhamnose lipids-biosynthesis, microbial production and application potential Appl Microbiol Biotechnol 1999; 51:22–32PubMedCrossRefGoogle Scholar
  15. 15.
    Maier RM, Soberon-Chavez G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications Appl Microbiol Biotechnol 2000; 54:625–633PubMedCrossRefGoogle Scholar
  16. 16.
    Ron E, Rosenberg EZ. Natural role of biosurfactants. J Environ Microbiol 2001; 3(4):229–236CrossRefGoogle Scholar
  17. 17.
    Bodour AA, Maier RM. Biosurfactant: types, screening methods and applications. In: Bitton G, ed Encyclopedia of Environmental Microbiology. New York: John Wiley & Sons, 2002:750–770Google Scholar
  18. 18.
    Maier RM. Biosurfactant: evolution and diversity in bacteria. Adv Appl Microbiol 2003; 52:101–121PubMedCrossRefGoogle Scholar
  19. 19.
    Inge NA, Bogaert V, Saerens K et al. Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 2007; 76:23–34CrossRefGoogle Scholar
  20. 20.
    Sullivan E. Molecular genetics of biosurfactant production. Curr Opinion Biotechnol 1998; 9:263–269CrossRefGoogle Scholar
  21. 21.
    Margesin R, Schinner F. Bioremediation (natural attenuation and biostimulation) of diesel-oil contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 2001; 67:3127–3133PubMedCrossRefGoogle Scholar
  22. 22.
    Olivera NL, Commendatore MG, Delgado O et al. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J Ind Microbiol Biotechnol 2003; 30:542–548PubMedCrossRefGoogle Scholar
  23. 23.
    Gunther NW, Nunez A, Fett W et al. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 2005; 71(5):2288–2293PubMedCrossRefGoogle Scholar
  24. 24.
    Turkovskaya OV, Dmitrieva TV, Muratova AY. A biosurfactant-Producing Pseudomonas aeruginosa Strain. Appl Biochem Microbiol 2001; 37(1):71–75CrossRefGoogle Scholar
  25. 25.
    Hommel RK, Ratledge C. Biosynthetic mechanisms of low molecular weight surfactants and their precursor molecules. In: Kosaric N, eds. Biosurfactant: Production, Properties, Applications. New York: Marcel Dekker, Inc, 1993:3–63Google Scholar
  26. 26.
    Syldatk C, Wagner F. Production of biosurfactants. In: Kosaric N, Cairns WL, Gray, NCC, eds. Bio-Surfactants and Biotechnology. New York: Marcel Dekker, Inc, 1987:89–120Google Scholar
  27. 27.
    Kitamoto D, Isoda H, Nakahara T. Functions and potential applications of glycolipid biosurfactant— from energy-saving materials to gene delivery carriers. J Biosci Bioengg 2002; 94:187–201Google Scholar
  28. 28.
    Wei YH, Chu IM. Mn 2+improves surfactin production by Bacillus subtilis Biotechnol Lett 2002; 24:479–482CrossRefGoogle Scholar
  29. 29.
    Bonilla M, Olivaro C, Corona M et al. Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 2005; 98:456–463PubMedCrossRefGoogle Scholar
  30. 30.
    Maneerat S, Takeshi B, Kazuo H et al. A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechno 2006; 70(2):254–259CrossRefGoogle Scholar
  31. 31.
    Shete AM. Studies on isolation, biochemical and physiological characteristics, antibiotic and bioemulsifier production and plasmid genetics of marine Acinetobacter 2003. A PhD. Thesis submitted to the University of Pune, Pune, IndiaGoogle Scholar
  32. 32.
    Dubey K, Juwarkar A. Determination of genetic basis for biosurfactant production in distillery and curd whey wastes utilizing Pseudomonas aeruginosa strain B2. Indian J Biotechnol 2004; 3(1):74–81Google Scholar
  33. 33.
    Botgelmez-Tinaz G. Quorum sensing in Gram-negative bacteria. Turk J Biol 2003; 7:85–93Google Scholar
  34. 34.
    Chopade BA. Genetics of antibiotic resistance in Acinetobacter calcoaceticus. 1986. PhD. thesis submitted to University of Nottingham, England, Great BritainGoogle Scholar
  35. 35.
    Patil JR, Chopade BA. Distribution and in vitro antimicrobial susceptibility of Acinetobacter species on the skin of healthy humans. Natl Med J India 2001; 14:204–208PubMedGoogle Scholar
  36. 36.
    Patil JR, Chopade BA. Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J Appl Microbiol 2001; 91(2):290–298PubMedCrossRefGoogle Scholar
  37. 37.
    Saha SC, Chopade BA. Effect of food preservatives on Acinetobacter genospecies isolated from meat J Food Sci Technol 2002; 39(1):26–32Google Scholar
  38. 38.
    Shete AM, Wadhawa GW, Banat IM et al. Mapping of patents on bioemulsifier and biosurfactant: A review. J Sci Indust Res 2006; 65:91–115Google Scholar
  39. 39.
    Sar N, Rosenberg E. Emulsifier production by Acinetobacter calcoaceticus strains. Curr Microbiol 1983;9:309–314CrossRefGoogle Scholar
  40. 40.
    Foght JM, Gutnick DL, Westlake DWS. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl Environ Microbiol 1989; 55:36–42PubMedGoogle Scholar
  41. 41.
    Patil, JR, Chopade BA. Bioemulsifier production by Acinetobacter strains isolated from healthy human skin. United States 2005. Patent No. 20050163739Google Scholar
  42. 42.
    Belsky I, Gutnick DL, Rosenberg E. Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett 1979; 101:175–178PubMedCrossRefGoogle Scholar
  43. 43.
    Rosenberg E, Zuckerberg A, Rubinovitz C et al. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 1979; 37:402–408PubMedGoogle Scholar
  44. 44.
    Zuckerberg A, Diver A, Peeri Z et al. Emulsifier of Arthrobacter RAG-1: chemical and physical properties Appl Environ Microbiol 1979; 37:414–420PubMedGoogle Scholar
  45. 45.
    Gorkovenko A, Zhang J, Gross RA et al. Bioengineering of emulsifier structure: emulsan analogs. Can J Microbiol 1997; 43:384–390PubMedCrossRefGoogle Scholar
  46. 46.
    Whitfield C, Roberts IS. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 1999; 31:1307–1319PubMedCrossRefGoogle Scholar
  47. 47.
    Whitfield C, Paiment A. Biosynthesis and assembly of group 1capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohyd Res 2003; 338:2491–2502CrossRefGoogle Scholar
  48. 48.
    Nakar D, Gutnick DL. Analysis of the wee gene cluster responsible for the biosynthesis of the polymeric bioemulsifier from the oil-degrading strain Acinetobacter woffii RAG-1. Microbiol 2001; 147:1937–1946Google Scholar
  49. 49.
    Nakar D, Gutnick DL. Involvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1. J Bacteriol 2003; 185(3):1001–1009PubMedCrossRefGoogle Scholar
  50. 50.
    Nesper J, Hill CM, Paiment A et al. Translocation of group 1 capsular polysaccharide in Escherichia coli serotype K30. Structural and functional analysis of the outer membrane lipoprotein Wza. J Biol Chem 2003; 278:49763–49772PubMedCrossRefGoogle Scholar
  51. 51.
    Gorkovenko A, Zhang J, Gross RA et al. Biosynthesis of emulsan analogs: direct incorporation of exogenous fatty acids. Proc Am Chem Soc Div Polym Sci Eng 1995; 72:92–93Google Scholar
  52. 52.
    Gorkovenko A, Zhang J, Gross RA et al. Control of unsaturated fatty acid substitutes in emulsans Carbohydr Polym 1999; 39:79–84CrossRefGoogle Scholar
  53. 53.
    Zhang J, Gorkovenko A, Gross RA et al. Incorporation of 2-hydroxyl fatty acids by Acinetobacter calcoaceticus RAG-1 to tailor emulsan structure. Int J Bio Macromol 1997; 20:9–21CrossRefGoogle Scholar
  54. 54.
    Johri AK, Blank W, Kaplan DL. Bioengineered emulsans from Acinetobacter calcoaceticus RAG-1 transposon mutants. Appl Microbiol Biotechnol 2002; 59:217–223PubMedCrossRefGoogle Scholar
  55. 55.
    Kaplan DL, Fuhrman J, Gross RA. Emulsan adjuvant immunization formulations and use. United States Patent 2004. Application No. 20040265340Google Scholar
  56. 56.
    Shabtai Y, Gutnick DL. Enhanced emulsan production in mutants of Acinetobacter calcoaceticus RAG-1 selected for resistance to cetyltrimethylammonium bromide. Appl Environ Microbiol 1986; 52:146–151PubMedGoogle Scholar
  57. 57.
    Alon RN, Gutnick DL. Esterase from the oil degrading Acinetobacter lwoffii RAG-1: sequence analysis and over expression in Escherichia coli. FEMS Microbiol Lett 1993; 12:275–280CrossRefGoogle Scholar
  58. 58.
    Dams-Kozlowska H, Kaplan DL. Protein engineering of wzc to generate new emulsan analogs. Appl Environ Microbiol 2007; 73(12):4020–4028PubMedCrossRefGoogle Scholar
  59. 59.
    Elkeles A, Rosenberg E, Ron EZ. Production and secretion of the polysaccharide biodispersan of Acinetobacter calcoaceticus A2 in protein secretion mutants. Appl Environ Microbiol 1994; 60(12):4642–4645PubMedGoogle Scholar
  60. 60.
    Bach H, Berdichevsky Y, Gutnick D. An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan Appl Environ Microbiol 2003; 69(5):2608–2615PubMedCrossRefGoogle Scholar
  61. 61.
    Tahzibi A, Kamal F, Assadi MM. Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran Biomed J 2004; 8(1):25–31Google Scholar
  62. 62.
    de Souza JT, de Boer M, de Waard P et al. Biochemical, Genetic and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens. Appl Environ Microbiol 2003; 69(12):7161–7172PubMedCrossRefGoogle Scholar
  63. 63.
    Zosim Z, Rosenberg E, Gutnick DL. Changes in hydrocarbon emulsification specificity of the polymeric bioemulsifier emulsan: effects of alkanols. Colloid Polym Sci 1986; 264:218–223CrossRefGoogle Scholar
  64. 64.
    Shabtai Y, Gutnick DL. Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus. J Bacteriol 1985; 161:1176–1181PubMedGoogle Scholar
  65. 65.
    Franco AV, Liu D, Reeves PR. The Wzz (cld) protein in Escherichia coli: amino acid sequence variation determines O-antigen chain length specificity. J Bacteriol 1998; 180:670–2675Google Scholar
  66. 66.
    Daniels C, Morona R. Analysis of Shigella flexneri wzz (Rol) function by mutagenesis and cross-linking: wzz is able to oligomerize. Mol Microbiol 1999; 34:181–194PubMedCrossRefGoogle Scholar
  67. 67.
    Leahy JG, Jones-Meehan JM, Pullas EL et al. Transposon mutagenesis in Acinetobacter calcoaceticus RAG-1. J Bacteriol 1993; 175:1838–1840PubMedGoogle Scholar
  68. 68.
    Reddy PG, Allon R, Mevarech M et al. Cloning and expression in Escherichia coli of an esterase-coding gene from the oil degrading bacterium Acinetobacter calcoaceticus RAG-1. Gene 1989; 76:145–152PubMedCrossRefGoogle Scholar
  69. 69.
    Barkay T, Navon-Venezia S, Ron EZ et al. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 1999; 65:2697–2702PubMedGoogle Scholar
  70. 70.
    Navon-Venezia Z, Zosim A, Gottlieb R et al. Alasan, a new bioemulsifier from Acinetobacter radioresistens Appl Environ Microbiol 1995; 61(9):3240–3244PubMedGoogle Scholar
  71. 71.
    Bekerman R, Segal G, Ron EZ et al. The AlnB protein of the bioemulsan alasan is a peroxiredoxin Appl Microbiol Biotechnol 2005; 66:536–541PubMedCrossRefGoogle Scholar
  72. 72.
    Toren A, Navon-Venezia S, Ron EZ et al. Emulsifying activity of purified alasan proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 2001; 67:1102–1106PubMedCrossRefGoogle Scholar
  73. 73.
    Toren A, Orr E, Paitan Y et al. The Active Component of the Bioemulsifier Alasan from Acinetobacter radioresistens KA53 is an OmpA-Like Protein. J Bacteriol 2002; 184(1):165–170PubMedCrossRefGoogle Scholar
  74. 74.
    Toren A, Segal G, Ron EZ et al. Structure—function studies of the recombinant protein bioemulsifier AlnA. Environ Microbiol 2002; 4(5):257–261PubMedCrossRefGoogle Scholar
  75. 75.
    Ofori-Darko E, Zavros Y, Rieder G et al. An OmpA-like protein from Acinetobacter spp. stimulates gastrin and interleukin-8 promoters. Infect Immun 2000; 68:3657–3666PubMedCrossRefGoogle Scholar
  76. 76.
    Rusansky S, Avigad R, Michaeli S et al. Effects of mixed nitrogen sources on biodegradation of phenol by immobilized Acinetobacter sp. strain W-17. Appl Environ Microbiol 1987; 53:1918–1923PubMedGoogle Scholar
  77. 77.
    Rosenberg E, Rubinovitz C, Gottlieb A et al. Production of biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 1988; 54:317–322PubMedGoogle Scholar
  78. 78.
    Rosenberg E, Rubinovitz C, Legmann R et al. Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 1988; 54:323–326PubMedGoogle Scholar
  79. 79.
    Rosenberg E, Schwartz Z, Tenenbaum A et al. Microbial polymer that changes the surface properties of limestone; effect of biodispersan in grinding limestone and making paper. J Dispersion Sci Technol 1989; 10:241–250CrossRefGoogle Scholar
  80. 80.
    Kaplan N, Rosenberg E. Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Appl Environ Microbiol 1982; 44:1335–1341PubMedGoogle Scholar
  81. 81.
    Ilan O, Bloch Y, Frankel G et al. Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. The EMBO J 1999; 18:3241–3248CrossRefGoogle Scholar
  82. 82.
    Jarvis FG, Johnson MJ. A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 1949; 71:4124–4126CrossRefGoogle Scholar
  83. 83.
    Bergstrom S, Theorell H, Davide H. On a metabolic product of Pseudomonas pyocyanea, pyolipic acid, active against Mycobacterium tuberculosis. Arkiv Kemi 1947; 23A(13):1–15Google Scholar
  84. 84.
    Hauser G, Karnovsky ML. Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J Biol Chem 1957; 224:91–105PubMedGoogle Scholar
  85. 85.
    Burger MM, Glaser L, Burton RM. The enzymatic synthesis of a rhamnose containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 1963; 238:2595–2602PubMedGoogle Scholar
  86. 86.
    Lang S, Wagner F. Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, eds. Biosurfactants and Biotechnology. New York: Marcel Dekker, 1987:21–47Google Scholar
  87. 87.
    Rendell NB, Taylor GW, Somerville M et al. Characterization of Pseudomonas rhamnolipids. Biochem Biophys Acta 1990; 16:189–193Google Scholar
  88. 88.
    Ochsner UA, Fiechter A, Reiser J. Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rhlA genes encoding rhamnosylatransferas involved in rhamnolipid biosurfactant sysnthesis genes. J Biol Chem 1994; 269:19787–19795PubMedGoogle Scholar
  89. 89.
    Ochsner UA, Koch AK, Fiechter A et al. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 1994; 176(7):2044–2054PubMedGoogle Scholar
  90. 90.
    Deziel E, Lepine F, Milot S et al. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxy-alkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol 2003; 149:2005–2013CrossRefGoogle Scholar
  91. 91.
    Rahim R, Ochsner UA, Olvera C et al. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 2001; 40(3):708–718PubMedCrossRefGoogle Scholar
  92. 92.
    Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactant in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 2007; 189:2531–2539PubMedCrossRefGoogle Scholar
  93. 93.
    Latifi A, Winson MK, Foglino M et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 1995; 17:333–343PubMedCrossRefGoogle Scholar
  94. 94.
    Stover CK, Pham XQ, Erwin AL et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 31:959–964Google Scholar
  95. 95.
    Mulligan CN, Gibbs BF. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 1989; 55:3016–3019PubMedGoogle Scholar
  96. 96.
    Bazire A, Dheilly A, Diab F et al. Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 2005; 253(1):125–131PubMedCrossRefGoogle Scholar
  97. 97.
    Ochsner UA, Reiser J, Fiechter A et al. Production of Pseudomonas aeruginosa rhamnolipid biosurfactant in heterologous hosts. Appl Environ Microbiol 1995; 61:3503–3506PubMedGoogle Scholar
  98. 98.
    Pesci EC, Pearson JP, Seed PC et al. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa J Bacteriol 1997; 179:3127–3132PubMedGoogle Scholar
  99. 99.
    Lazdunski AM, Ventre I, Sturgis JN. Regulatory circuits and communication in Gram-negative bacteria Nat Rev Microbiol 2004; 2:581–592PubMedCrossRefGoogle Scholar
  100. 100.
    Ochsner UA, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1995; 92:6424–6428PubMedCrossRefGoogle Scholar
  101. 101.
    Albus AM, Pesci EC, Runyen-Janecky LJ et al. Vfr control quorum sensing in Pseudomonas aeruginosa J Bacteriol 1997; 179:3928–3935PubMedGoogle Scholar
  102. 102.
    Latifi A, Foglino M, Tanaka K et al. A hierachical quorum sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996; 21:1137–1146PubMedCrossRefGoogle Scholar
  103. 103.
    Medina G, Juärez K, Diäz R et al. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiol 2003; 149:3073–3081CrossRefGoogle Scholar
  104. 104.
    Holden PA, LaMontagne MG, Bruce AK et al. Assesing the role Pseudomonas aeruginosa: surface active gene expression in hexadecane biodegradation in sand. Appl Environ Microbiol 2002; 68(5):2509–2518PubMedCrossRefGoogle Scholar
  105. 105.
    Schlictman D, Kubo M, Shankar S et al. Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: Roles of algR2 and algH. J Bacteriol 1995; 177(9):2469–2474PubMedGoogle Scholar
  106. 106.
    Lequette Y, Greenberg EP. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 2005; 187(1):37–44PubMedCrossRefGoogle Scholar
  107. 107.
    Campos-Garcí AJ, Caro AD, NäJera R et al. The Pseudomonas aeruginosa rhlG gene encodes an NADPH dependent β-Ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 1998; 180(17):4442–4451Google Scholar
  108. 108.
    Branny P, Pearson JP, Pesci EC et al. Inhibition of quorum sensing by a Pseudomonas aeruginosa dksA homologue. J Bacteriol 2001; 183(5):1531–1539PubMedCrossRefGoogle Scholar
  109. 109.
    Dubern JF, Lagendijk EL, Lugtenberg BJJ et al. The heat shock genes dnaK, dnaJ and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J Bacteriol 2005; 187(17):5967–5976PubMedCrossRefGoogle Scholar
  110. 110.
    Huber B, Riedel K, Hentzer M et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiol 2001; 147:2517–2528Google Scholar
  111. 111.
    Noordman WH, Janssen DB. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 2002; 68:4502–4508PubMedCrossRefGoogle Scholar
  112. 112.
    Raza ZA, Khan MS, Khalid ZM et al. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol Lett 2006; 28(20):1623–1631.PubMedCrossRefGoogle Scholar
  113. 113.
    Raza ZA, Khan MS, Khalid ZM et al. Production of Biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant. Z Naturforsch 2006; 61c:87–94.Google Scholar
  114. 114.
    Mulligan CN, Mahmourides G, Gibbs BF. Biosurfactant production by chloramphenicol-tolerant strain of Pseudomonas aeruginosa. J Biotechnol 1989; 12:37–44.CrossRefGoogle Scholar
  115. 115.
    Mulligan CN, Mahmourides G, Gibbs BF. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol 1989; 12:199–210.CrossRefGoogle Scholar
  116. 116.
    Beal R, Betts WB. Role of rhamnolipid biosurfactant in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Bacteriol 2000; 89:158–168.Google Scholar
  117. 117.
    Shrive GS, Inguva S, Gunnam S. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol Marine Biol Biotechnol 1995; 4:331–337.Google Scholar
  118. 118.
    Koch AK, Kappeli O, Fiechter A et al. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 1991; 173(13):4212–4219.PubMedGoogle Scholar
  119. 119.
    Al-Tahhan RA, Sandrin TR, Bodour AA et al. Rhamnolipid-induced removal of lipopolysaccharide from pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 2000; 66(8):3262–3268.PubMedCrossRefGoogle Scholar
  120. 120.
    Iqbal S, Khalid ZM, Malik KA. Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactant by a gamma ray-induced mutant of Pseudomonas aeruginosa. Lett Appl Microbiol 1995; 21(3):176–179.PubMedCrossRefGoogle Scholar
  121. 121.
    Raza ZA, Khan MS, Khalid ZM. Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. Process Biochem 2007; 42(4):686–692.CrossRefGoogle Scholar
  122. 122.
    Koch AK, Reiser J, Kappeli O et al. Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in biosurfactant production. Biotechnol 1988; 6:1335–1339.CrossRefGoogle Scholar
  123. 123.
    Flemming CA, Leung KT, Lee H et al. Survival of lux-lac-marked biosurfactant-producing Pseudomonas aeruginosa UG2L in soil monitored by nonselective plating and PCR. Appl Environ Microbiol 1994; 60(5):1606–1613.PubMedGoogle Scholar
  124. 124.
    Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline lipopeptide surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 1968; 31:488–494.PubMedCrossRefGoogle Scholar
  125. 125.
    Cooper DG, Goldenberg BG. Surface-active agents from two Bacillus species. Appl Environ Microbiol 1987; 53:224–229.PubMedGoogle Scholar
  126. 126.
    Banat IM. The isolation of a thermophilic biosurfactant producing Bacillus Sp. Biotechnol Lett 1993; 15(6):591–594.CrossRefGoogle Scholar
  127. 127.
    Kluge B, Vater J, Salnikow J et al. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett 1988; 231:107–110.PubMedCrossRefGoogle Scholar
  128. 128.
    Nakano MM, Marahiel MA, Zuber P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 1988; 170(12):5662–5668.PubMedGoogle Scholar
  129. 129.
    D’Souza C, Nakano M, Corbel N et al. Amino acid site mutations in amino—acid-activating domains of surfactin synthetase; Effects on surfactin production and competence development in Bacillus subtilis. J Bacteriol 1993; 173(11):3502–3510.Google Scholar
  130. 130.
    Galli G, Rodriguez F, Cosmina P et al. Characterization of the surfactin synthetase multi-enzyme complex. Biochem Biophys Acta 1994; 1205:19–28.PubMedCrossRefGoogle Scholar
  131. 131.
    de Ferra F, Rodriguez F, Tortora O et al. Engineering of Peptide Synthetases key role of the thioesterase-like domain for efficient production of recombinant peptides. J Biol Chem 1997; 272(40):25304–25309.PubMedCrossRefGoogle Scholar
  132. 132.
    Nakano MM, Corbell N, Besson J et al. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 1992; 232(2):313–321.PubMedGoogle Scholar
  133. 133.
    Solomon JM, Lazazzera BA, Grossman AD. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 1996; 10:2014–2024.PubMedCrossRefGoogle Scholar
  134. 134.
    Solomon JM, Grossman AD. Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet 1996; 12:150–155.PubMedCrossRefGoogle Scholar
  135. 135.
    Magnuson R, Solomon J, Grossman AD. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 1994; 77(2):207–216.PubMedCrossRefGoogle Scholar
  136. 136.
    Lazazzera BA, Solomon JM, Grossman AD. An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 1997; 89:917–925.PubMedCrossRefGoogle Scholar
  137. 137.
    Luttinger A, Hahn J, Dubnau D. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 1996; 19:343–356.PubMedCrossRefGoogle Scholar
  138. 138.
    Liu L, Nakano MM, Lee OH et al. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 1996; 178:5144–5152.PubMedGoogle Scholar
  139. 139.
    D’Souza C, Nakano MM, Zuber P. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci USA 1994; 91(20):9397–9401.PubMedCrossRefGoogle Scholar
  140. 140.
    Fabret C, Quentin Y, Guiseppi A et al. Analysis of errors in finished DNA sequences: the surfactin operon of Bacillus subtilis as an example. Microbiol 1995; 141:345–350.CrossRefGoogle Scholar
  141. 141.
    Cosmina P, Rodriguez F, De Ferra F et al. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 1993; 8:821–831.PubMedCrossRefGoogle Scholar
  142. 142.
    Nakano MM, Magnuson R, Myers A et al. srfA is an operon required for surfactin production, competence development and efficient sporulation in Bacillus subtilis. J Bacteriol 1991; 173(5):1770–1778.PubMedGoogle Scholar
  143. 143.
    Hsieh FC, Li MC, Lin TC et al. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 2004; 49:186–191.PubMedCrossRefGoogle Scholar
  144. 144.
    Tsuge K, Ohata Y, Shoda M. Geneyer P, Involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother 2001; 45(12):3566–3573.PubMedCrossRefGoogle Scholar
  145. 145.
    Borchert S, Stachelhaus T, Arahiel MA. Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin s operon in Bacillus brevis. J Bacteriol 1994; 176(8):2458–2462.PubMedGoogle Scholar
  146. 146.
    Fuma S, Fujishima Y, Corbell N et al. Nucleotide sequence of 5′ portion of srfA that contains the region required for competence establishment in Bacillus subtilis. Nucleic Acids Research 1993; 21(1):93–97.PubMedCrossRefGoogle Scholar
  147. 147.
    Nakano MM, Xia LA, Zuber P. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol 1991; 173(17):5487–5493.PubMedGoogle Scholar
  148. 148.
    Nakano MM, Zuber P. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J Bacteriol 1989; 171(10):5347–5353.PubMedGoogle Scholar
  149. 149.
    Steller S, Sokoll A, Wilde C et al. Initiation of surfactin biosynthesis and role of Srf-Dthioesterase protein. Biochem 2004; 43:11331–11343.CrossRefGoogle Scholar
  150. 150.
    Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56(4):845–857.PubMedCrossRefGoogle Scholar
  151. 151.
    Hamoen LW, Venema G, kuipers OP. Controlling competence in Bacillus subtilis; shared use of regulators. Microbiol 2003; 149:9–17.CrossRefGoogle Scholar
  152. 152.
    Hamon MA, Lazazzera BA. The sporulation transcription factor ApoOA is required for biofilm development in Bacillus subtilis. Mol Microbiol 2001; 42:1199–1209.PubMedCrossRefGoogle Scholar
  153. 153.
    Cosby WM, Vollenbroich D, Lee OH et al. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 1998; 180(6):1438–1445.PubMedGoogle Scholar
  154. 154.
    Perego M, Higgins CF, Pearce SR et al. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 1991; 5:173–185.PubMedCrossRefGoogle Scholar
  155. 155.
    Rudner DZ, Ledeaux JR, Ireton K et al. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J Bacteriol 1991; 173:1388–1398.PubMedGoogle Scholar
  156. 156.
    Kim HS, Kim SB, Park SH et al. Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis. Biotechnol Lett 2000; 22:1431–1436.CrossRefGoogle Scholar
  157. 157.
    Lee YK, Kim SB, Park CS et al. Chromosomal integration of sfp gene in Bacillus subtilis to enhance bioavailability of hydrophobic liquids. Appl Microbiol Biotechnol 2005; 67(6):789–794.PubMedCrossRefGoogle Scholar
  158. 158.
    Morikawa M, Ito M, Imanaka T. Isolation of a new surfactin producer Bacillus pumilus A-1 and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferm Bioengg 1992; 74(5):255–261.CrossRefGoogle Scholar
  159. 159.
    Yakimov MM, Timmis KM, Wray V et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 1995; 61:1706–1713.PubMedGoogle Scholar
  160. 160.
    Yakimov MM, Golyshin PN. ComA-dependant transcriptional activation of lichenysin A synthetase promoter in Bacillus subtilis cells. Biotechnol Prog 1997; 13:757–761.PubMedCrossRefGoogle Scholar
  161. 161.
    Yakimov MM, Giuliano L, Timmis KN et al. Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells. J Mol Microbiol Biotechnol 2000; 2:217–224.PubMedGoogle Scholar
  162. 162.
    Lin SC, Lin KG, Lo CC et al. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb Technol 1998; 23:267–273.CrossRefGoogle Scholar
  163. 163.
    Mulligan CN, Chow TYK, Gibbs BF. Surfactin production by a Bacillus subtilis mutant. Appl Microbiol Biotechnol 1989; 31:486–489.CrossRefGoogle Scholar
  164. 164.
    Ohno A, Ano T, Shoda M. Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 1995; 47:209–214.PubMedCrossRefGoogle Scholar
  165. 165.
    Nakayama S, Takahashi S, Hirai M et al. Isolation of new variants of surfactin by a recombinant Bacillus subtilis. Appl Microbiol Biotechnol 1997; 48:80–82.CrossRefGoogle Scholar
  166. 166.
    Carrera P, Cosmina P, Grandi G. Eniricerche SPA., Milan, Italy. Mutant of Bacillus subtilis, United States Patent 1993. Application No. 5264363.Google Scholar
  167. 167.
    Carrera P, Cosmina P, Grandi G. Eniricerche SPA., Milan, Italy. Method of producing surfactin with the use of mutant of Bacillus subtilis. United States Patent 1993. Application No. 5227294.Google Scholar
  168. 168.
    Yoneda T, Yoshiaki M, Kazuo F et al. Showa Denko KK ( JP), Tokyo, Japan. Production process of surfactin, United States Patent 2006. Application No. 7011969.Google Scholar
  169. 169.
    Symmank H, Franke P, Saenger W et al. Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Engg 2002; 115(11):913–921.CrossRefGoogle Scholar
  170. 170.
    Nakano MM, Zuber P. Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis. J Bacteriol 1993; 175(10):3188–3191.PubMedGoogle Scholar
  171. 171.
    Reuter K, Mofid MR, Marahiel MA et al. Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. The EMBO J 1999; 18(23):6823–6831.CrossRefGoogle Scholar
  172. 172.
    Matsuyama T, Sogawa M, Yanot I. Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 1987; 53(5):1186–1188.Google Scholar
  173. 173.
    Horng YT, Deng SC, Daykin M et al. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 2002; 45:1655–1671.PubMedCrossRefGoogle Scholar
  174. 174.
    Wei Y, Lai HC, Chen SU et al. Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotechnol Lett 2004; 26:799–802.PubMedCrossRefGoogle Scholar
  175. 175.
    Williams P, Camara M, Hardman A et al. Quorum sensing and the population-dependent control of virulence. Philos Trans R Soc London B Biol Sci 2000; 355:667–680.PubMedCrossRefGoogle Scholar
  176. 176.
    Matsuyama T, Bhasin A, Harshey RM. Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 1995; 177:987–991.PubMedGoogle Scholar
  177. 177.
    Wei J, Soo PC, Horng YT et al. Regulatory roles of spnT, a novel gene located within transposon TnTIR. Biochem Biophy Res Comm 2006; 348:1038–1046.CrossRefGoogle Scholar
  178. 178.
    Wei J, Tsai YH, Horng YT et al. A mobile quorum-sensing system in Serratia marcescens. J Bacteriol 2006; 188(4):1518–1525.PubMedCrossRefGoogle Scholar
  179. 179.
    Li H, Tanikawa T, Sato Y et al. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 2005; 49(4):303–310.PubMedGoogle Scholar
  180. 180.
    Sunaga S, Li H, Sato Y et al. Identification and characterization of the pswP gene required for the parallel production of prodigiosin and serrawettin W1 in Serratia marcescens. Microbiol Immunol 2004; 48(10):723–728.Google Scholar
  181. 181.
    Tanikawa T, Nakagawa Y, Matsuyama T. Transcriptional downregulator HexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol Immunol 2006; 50(8):587–596.PubMedGoogle Scholar
  182. 182.
    Riedel K, Talker-Huiber D, Givskov M et al. Identification and characterization of a GDSL esterase gene located proximal to the swr quorum-sensing system of Serratia liquefaciens MG1. Appl Environ Microbiol 2003; 69(7):3901–3910.PubMedCrossRefGoogle Scholar
  183. 183.
    Lindum PW, Anthoni U, Christophersen C et al. n-acyl-l-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 1998; 180(23):6384–6388.PubMedGoogle Scholar
  184. 184.
    Rosenberg M, Kjelleberg S. Hydrophobic interactions in bacterial adhesion. Adv Microb Ecol 1986; 9:353–393.Google Scholar
  185. 185.
    Ullrich C, Kluge B, Palacz Z et al. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochem 1991; 30:6503–6508.CrossRefGoogle Scholar
  186. 186.
    Inge NA, Bogaert V, Develter D et al. Cloning and characterization of the NADPH cytochrome P450 reductase gene (CPR) from Candida bombicola. FEMS Yeast Res 2007; 7(6):922–928.CrossRefGoogle Scholar
  187. 187.
    Solaiman DK, Ashby RD, Nunez A. Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotech Lett 2004; 26:1241–1245.CrossRefGoogle Scholar
  188. 188.
    Solaiman D, Ashby RD, Foglia TA. Characterization and manipulation of genes in the biosynthesis of sophorolipids and poly (hydroxyalkanoates). In: Proceedings of the United States-Japan Cooperative program in natural resources, protein resources panel Annual Meeting 2004. 215–219.Google Scholar
  189. 189.
    Solaiman D, Ashby RD, Foglia TA et al. Biosurfactants from microbial fermentation of renewable substrates [abstract]. Industrial application of renewable resources—A Conference on Sustainable Technologies, American Oil Chemists’ Society 2004. 14.Google Scholar
  190. 190.
    Hommel RK, Huse K. Regulation of sophorose lipid production by Candida apicola. Biotechnol Lett 1993; 33:853–858.Google Scholar
  191. 191.
    Ashby RD, Solaiman D, Foglia TA. The use of fatty acid-esters to enhance free acid sophorolipid synthesis. Biotechnol Lett 2006; 28:253–260.PubMedCrossRefGoogle Scholar
  192. 192.
    Zerkowski JA, Solaiman D. Polyhydroxy fatty acids derived from sophorolipids. J Amer Oil Chemists Soc 2007; 84(5):463–471.CrossRefGoogle Scholar
  193. 193.
    Van Bogaert INN, Develter D, Soetaert W et al. Cloning and characterization of the NADPH cytochrome P450 reductase gene (CPR) from Candida bombicola. FEMS Yeast Res 2007; 7(6):922–928.PubMedCrossRefGoogle Scholar
  194. 194.
    Nebert DW, Gonzalez FJ. P450 genes: structure, evolution and regulation. Ann Rev Biochem 1987; 56:945–993.PubMedCrossRefGoogle Scholar
  195. 195.
    Esders TW, Light RJ. Characterization and in vivo production of three glycolipids from Candida bogoriensis: 13-glucopyranosylglucopyranosyloxydocosanoic acid and its mono-and diacetylated derivatives. J Lipid Res 1972; 13:663–671.PubMedGoogle Scholar
  196. 196.
    Esders TW, Light RJ. Glucosyl-and Acetyltransferases involved in the biosynthesis of glycolipids from Candida bogoriensis. J Biol Chem 1972; 247:1375–1386.PubMedGoogle Scholar
  197. 197.
    Bucholtz ML, Light RJ. Acetylation of 13-sophorosyloxydocosanoic acid by an acetyltransferase purified from Candida bogoriensis. J Biol Chem 1976; 251(2):424–430.PubMedGoogle Scholar
  198. 198.
    Finerty WR. Genetics and biochemistry of biosurfactant synthesis in Arthrobacter species H-13-A Progress Report (Arthrobacter H-13-A): 1988. DOE/ER/10683-6.Google Scholar
  199. 199.
    Konishi M, Morita T, Fukuoka T et al. Production of different types of mannosylerythritol lipids as biosurfactant by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 2007; 75:521–531.PubMedCrossRefGoogle Scholar
  200. 200.
    Hewald S, Josephs K, Bölker M. Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 2005; 71(6):3033–3040.PubMedCrossRefGoogle Scholar
  201. 201.
    Hewald S, Linne U, Scherer M et al. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 2006; 72(8):5469–5477.PubMedCrossRefGoogle Scholar
  202. 202.
    Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. TRENDS Biotechnol 2006; 24(11):509–515.CrossRefGoogle Scholar
  203. 203.
    Bodour AA, Miller-Maier R. x) Biosurfactants: types, screening methods and applications: In: Bitton G, ed. Encyclopedia of Environmental Microbiology. 1st ed. Hoboken: John Wiley and Sons, Inc., 2000:750–770.Google Scholar
  204. 204.
    Morita T, Konishi M, Fukuoka T et al. Discovery of Pseudozyma rugulosa NBRC10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids based on rDNA sequence. Appl Microbiol Biotechnol 2006; 73(2):305–313.PubMedCrossRefGoogle Scholar
  205. 205.
    Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. PNAS 1999; 96(24):13904–13909.PubMedCrossRefGoogle Scholar
  206. 206.
    Morita T, Habe H, Fukuoka T et al. Gene expression profiling and genetic engineering of a basidiomycetous yeast, Pseudozyma antarctica, which produces multifunctional and environmentally-friendly surfactants (biosurfactant). The XXIIIrd International conference on yeast genetics and molecular biology melbourne 2007. Australia 1–6.Google Scholar
  207. 207.
    Morita T, Konishi K, Fukuoka T et al. Microbial conversion of glycerol in to glycolipid biosurfactant, mannosylerythritol lipids by basidiomycete yeast Pseudozyma antarctica, JCM 1037. J Biosci Bioeng 2007; 104(1):78–81.PubMedCrossRefGoogle Scholar
  208. 208.
    Inoh Y, Kitamoto D, Hirashima N et al. Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 2004; 94(2–3):423–431.PubMedCrossRefGoogle Scholar
  209. 209.
    Ripp S, Nivens DE, Werner C et al. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 2000; 34:846–853.CrossRefGoogle Scholar
  210. 210.
    Minast W, Gutnick DL. Isolation, characterization and sequence analysis of cryptic plasmids from Acinetobacter calcoaceticus and their use in the construction of Escherichia coli shuttle plasmids. Appl Environ Microbiol 1993; 59(9):2807–2816.Google Scholar
  211. 211.
    Panilaitis B, Johri A, Blank W et al. Adjuvant activity of emulsan, a secreted lipopolysaccharide from Acinetobacter calcoaceticus. Clin Diagn Lab Immunol 2002; 9:1240–1247.PubMedGoogle Scholar
  212. 212.
    Castro GR, Kamdar RR, Panilaitis B et al. Triggered release of proteins from emulsan-alginate beads. J Control Release 2005; 109:149–157.PubMedCrossRefGoogle Scholar
  213. 213.
    Cha M, Lee N, Kim M et al. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 2008; 99(7):2192–2199.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Surekha K. Satpute
    • 1
  • Smita S. Bhuyan
    • 1
  • Karishma R. Pardesi
    • 1
  • Shilpa S. Mujumdar
    • 2
  • Prashant K. Dhakephalkar
    • 3
  • Ashvini M. Shete
    • 4
  • Balu A. Chopade
    • 5
  1. 1.Department of MicrobiologyUniversity of PuneMaharashtraIndia
  2. 2.Department of Microbiology Modern College of ArtsScience and CommerceMaharashtraVadodaraÍndiaIndia
  3. 3.Division of Microbial SciencesAgharkar Research InstituteMaharashtraIndia
  4. 4.Praj Industries LimitedMaharashtraIndia
  5. 5.Institute of Bioinformatics & Biotechnology, and Department of MicrobiologyUniversity of PunePuneIndia

Personalised recommendations