Biosurfactants pp 250-260 | Cite as

Environmentally Friendly Biosurfactants Produced by Yeasts

  • Galba M. Campos-Takaki
  • Leonie Asfora Sarubbo
  • Clarissa Daisy C. Albuquerque
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)


Some yeasts are preferred to bacteria as sources for biosurfactants, mainly due to their GRAS status for environmental and health safety reasons. This chapter thus focuses on the production of biosurfactants by some yeast cultures using renewable resources like fatty wastes from household and vegetable oil refineries as major substrates. The chapter also emphasizes on the importance of the application of response surface methodology and artificial neural network techniques for the optimization of biosurfactant production by yeasts.


Biosurfactant Production Kluyveromyces Marxianus Candida Lipolytica Cial Neural Network Actant Production Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abalos A, Maximo F, Manresa MA et al. Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10. J Chem Technol Biotechnol 2002; 77(7):777–784.CrossRefGoogle Scholar
  2. 2.
    Adamczak M, Bednarski W. Influence of medium composition and aeration on the synthesis of surfactants produced by Candida Antarctica. Biotechnol Lett 2000; 22:313–316.CrossRefGoogle Scholar
  3. 3.
    Albuquerque CDC, Vance-Harrop MH, Sarubbo LA et al. Biosurfactant production by Candida Lipolytica—study of the culture medium components using factorial design. Revista Symposium 2005; 1:109–115.Google Scholar
  4. 4.
    Albuquerque CDC. Processo de Produção de Bioemulsificante por Candida lipolytica: Otimização, Ampliação de Escala e Desenvolvimento de Softsensor baseado em Redes Neurais Artificiais. D.Sc. Thesis, State University of Campinas, Brazil: 2006.Google Scholar
  5. 5.
    Albuquerque CDC, Filetti AMF, Campos-Takaki GM. Optimizing the medium components in bioemulsifier production by Candida lipolytica with response surface method. Can J Microbiol 2006; 52:575–583.CrossRefPubMedGoogle Scholar
  6. 6.
    Albuquerque CDC, Campos-Takaki GM, Fileti AMF. Neural network based software sensors: application to biosurfactant production by Candida lipolytica. In: Antonio Mendez-Vilas. (Org.). Modern Multidisciplinary Applied Microbiology—Exploiting Microbes and their Interactions. 1st ed.Weinheim: Wiley—VCH, 2006:628–632.CrossRefGoogle Scholar
  7. 7.
    Amaral PFF, da Silva JM, Lehocky M et al. Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 2006; 41:1894–1898.CrossRefGoogle Scholar
  8. 8.
    Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F et al. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Biores Technol 2007; 98:237–240.CrossRefGoogle Scholar
  9. 9.
    Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 2000; 53:495–508.CrossRefPubMedGoogle Scholar
  10. 10.
    Bednarski W, Adamczak M, Tomasik J et al. Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Biores Technol 2004; 95:15–18.CrossRefGoogle Scholar
  11. 11.
    Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriol 1941; 41:653–673.Google Scholar
  12. 12.
    Cameron DR, Cooper DG, Neufeld RJ. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 1988; 54:1420–1425.PubMedGoogle Scholar
  13. 13.
    Casas JA, Garcia de Lara S, Garcia-Ochoa F. Optimizing of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enz Microbial Technol 1997; 21:221–29.CrossRefGoogle Scholar
  14. 14.
    Chen L.-Z, Nguang S.-K, Chen X.-D. Soft sensors for on-line biomass measurements. Bioprocess Biosys Enginee 2004; 26(3):191–195.CrossRefGoogle Scholar
  15. 15.
    Chen S.-Y, Lu W.-B, Wei Y.-H et al. Improved Production of Biosurfactant with Newly Isolated Pseudomonas aeruginosa S2. Biotechnol Progress 2007; 23(3):661–666.CrossRefGoogle Scholar
  16. 16.
    Cirigliano MC, Carman GM. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 1985; 50:846–850.PubMedGoogle Scholar
  17. 17.
    Cirigliano MC, Carman GM. Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 1984; 48:747–750.PubMedGoogle Scholar
  18. 18.
    Cladera-Olivera F, Caron GR, Brandeli A. Bacterocin Production by Baccilus licheniformis strain P4 in cheese whey using Response Surface Methodology. Biochem Enginee J 2004; 21:53–58.CrossRefGoogle Scholar
  19. 19.
    Cooper DG. Biosurfactants. Microbiol Sci 1986; 3:145–147.PubMedGoogle Scholar
  20. 20.
    Cooper DG, Paddock DA. Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 1984; 47:173–176.PubMedGoogle Scholar
  21. 21.
    Costa AC, Atala DIP, Maugeri Filho F et al. Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochem 2001; 37(2):125–137.CrossRefGoogle Scholar
  22. 22.
    Crolla A, Kennedy KJ. Optimization of acid citric production from Candida lipolytica Y-p1095 using n-paraffin. J Biotechnol 2001; 89:27–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Cutler AJ, Light RJ. Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. J Biol Chem 1979; 254(6):1944–1950.PubMedGoogle Scholar
  24. 24.
    Davila AM, Marchal R, Vandecasteele JP. Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola. Appl Microbiol Biotechnol 1992; 39(1):6–11.Google Scholar
  25. 25.
    Deepthi N, Rastogi NK, Manonmani HK. Degradation of DDT by a Defined Microbial Consortium: Optimization of Degradation Conditions by Response Surface Methodology. Res J Microbiol 2007; 2(4):315–326.CrossRefGoogle Scholar
  26. 26.
    Desai JD. Microbial surfactants: evaluation, types and future applications. J Sci Ind Res 1987; 46:440–449.Google Scholar
  27. 27.
    Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Reviews 1997; 61(1):47–64.Google Scholar
  28. 28.
    Desai JD, Desai AJ. Production of biosurfactants. In: Kosaric N, ed. Biosurfactants: Production, Properties and Applications. New York: Marcel Dekker, 1993:65–86.Google Scholar
  29. 29.
    Desai AJ, Patel RM, Desai JD. Advances in production of biosurfactant and their commercial application. J Sci Ind Res 1994; 53:619–629.Google Scholar
  30. 30.
    Di Massimo C, Montague GA, Willis MJ et al. Towards improved penicillin fermentation via artificial neural networks. Comp Chem Enginee 1992; 16(4):283–291.CrossRefGoogle Scholar
  31. 31.
    Elibol M, Ozer D. Response surface analysis of lipase production by freely suspended Rhizopus arrhizu.s Process Biochem 2002; 38:367–372.CrossRefGoogle Scholar
  32. 32.
    Felse PA, Shah V, Chan J et al. Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enz Microbial Technol 2007; 40(2):316–323.CrossRefGoogle Scholar
  33. 33.
    Garcia-Ochoa F, Casas JA. Unstructured kinetic model for sophorolipid production by Candida bombicola. Enzyme Microb Technol 1999; 25:613–621.CrossRefGoogle Scholar
  34. 34.
    Gallert C, Winter J. Solid and liquid residues as raw materials for biotechnology. J Naturwissenschaften 2002; 89(11):483–496.CrossRefGoogle Scholar
  35. 35.
    Georgiou G, Lin SC, Sharma MM. Surface active compounds from microorganisms. Bio/Technology 1990; 10:60–65.CrossRefGoogle Scholar
  36. 36.
    Hommel RK, Stuwer O, Stubrerd W et al. Production of water soluble surface active exolipids by Torulopsis apicola. Appl Microbiol Biotechnol 1987; 26:199–205.CrossRefGoogle Scholar
  37. 37.
    Hu Y, Ju LK. Purification of lactonic sophorolipids by crystallization. J Biotechnol 2001; 87:263–272.CrossRefPubMedGoogle Scholar
  38. 38.
    Johnson V, Singh M, Saini VS. Bioemulsifier production by an oleaginous yeast Rhodotorula glutinis IIP-30. Biotechnol Lett 1992; 14(6):487–490.CrossRefGoogle Scholar
  39. 39.
    Kakugawa K, Tamai M, Imamura K et al. Isolation of Yeast Kurtzmanomyces sp. I-11, Novel producer of mannosylerythritol lipid. Biosci Biotechnol Biochem 2002; 66(1):188–191CrossRefPubMedGoogle Scholar
  40. 40.
    Kappeli O, Muller M, Fiechter A. Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate. J Bacteriol 1978; 133:952–958.PubMedGoogle Scholar
  41. 41.
    Karim MN, Rivera SL. Artificial neural networks in bioprocess state estimation. Adv Biochem Eng 1992; 46:1–33.Google Scholar
  42. 42.
    Kim HS, Jeon JW, Lee HW et al. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnol Letters 2002; 24(3):225–229.CrossRefGoogle Scholar
  43. 43.
    Koprinkova-Hristova P, Patarinska T. Neural network modelling of continuous microbial cultivation accounting for the memory effects. Inter J Systems Sci 2006; 37:5/15:271–277.CrossRefGoogle Scholar
  44. 44.
    Laith AL-A, Rahman RNZA, Basri M et al. The effects of culture conditions on biosurfactant activity of Pseudomonas aeruginosa 181 using response surface methodology. J Medical Biological Sci 2007; 1(1):1–4Google Scholar
  45. 45.
    Linko S, Luopa J, Zhu Y.-H. Neural network as software sensors in enzyme production. J Biotecnol 1997; 52:257–266.CrossRefGoogle Scholar
  46. 46.
    Linko S, Zhu Y.-H, Linko P. Applying neural network as software sensors for enzyme engineering. Tibitech 1999; 17:155–162.Google Scholar
  47. 47.
    Luna JM, Sarubbo LA, Campos-Takaki GM. A new biosurfactant produced by Candida glabrata UCP1002: characteristics of stability and application in oil recovery. Brazilian Arch Biol Technol in press, 2008.Google Scholar
  48. 48.
    Lukondeh T, Ashbolt NJ, Rogers PL. Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. Journal of Industrial Microbiology and Biotechnology 2003; 30(2):715–720. ISSN 1367–5435.CrossRefPubMedGoogle Scholar
  49. 49.
    Lukondeh T, Ashbolt NJ, Rogers PL et al. NMR confirmation of an alkali-insoluble glucan from Kluyveromyces marxianus cultivated on a lactose-based medium. World J Microbiol Biotech 2003; 19(4):349–355. ISSN 0959–3993.CrossRefGoogle Scholar
  50. 50.
    Marçal M. do CR. Produção de biopolímeros por Candida lipolytica em meios suplementados por óleos vegetais (babaçu, côco e dendê). Recife 1991:147. Thesis. (in Nutrition). Health Sciences Center, UFPE, 1991.Google Scholar
  51. 51.
    Miranda OA, Salgueiro AA, Pimentel MCB et al. Lipase production by a Brazilian strain of Penicillium citrinum using an industrial residue. Bioresource Technol 1999; 69: 145–147.CrossRefGoogle Scholar
  52. 52.
    Morita T, Konishi M, Fukuoka T et al. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol 2006; 73(2):305–313.CrossRefPubMedGoogle Scholar
  53. 53.
    Moussa TAA, Ahmed GM, Abdel-hamid SMS. Optimization of cultural conditions for biosurfactant production from Nocardia amarae. J Appl Sci Res 2006; 2(11):844–850.Google Scholar
  54. 54.
    Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. TRENDS Biotechnol 2006; 24(11):509–515.CrossRefPubMedGoogle Scholar
  55. 55.
    Mulligan CN. Environmental applications for biosurfactants. Environ Pollut 2005; 133:183–198.CrossRefPubMedGoogle Scholar
  56. 56.
    Nunez A, Ashby RD, Foglia TA et al. LC/MS analysis and lipase modification of the sophorolipids produced by Rhodotorula bogoriensis. Biotechnol Letters 2004; 26:1087–1093.CrossRefGoogle Scholar
  57. 57.
    Pareilleux A. Hydrocarbon assimilation by Candida lipolytica: formation of a biossurfactant: effects on respiratory activity and growth. Eur J Appl Microbiol Biotechnol 1979; 8:91–101.CrossRefGoogle Scholar
  58. 58.
    Pekin G, Vardar-Sukan F. Production of sophorolipids using the yeast Candida bombicola ATTC 22214 for the applications in the food industry. J Eng Nat Sci 2006; 2:109–116.Google Scholar
  59. 59.
    Ramnani P, Kumar SS, Gupta R. Concomitant production and downstream processing of alkaline protease and biosurfactant from Bacillus licheniformis RG1: Bioformulation as detergent additive. Process Biochem 2005; 40:10:3352–3359.CrossRefGoogle Scholar
  60. 60.
    Rau U, Manzke C, Wagner F. Influence of substrate supply on the production of sophorose lipids by Candida bombicola ATCC 22214. Biotechnol Letters 1996; 18:149–154.CrossRefGoogle Scholar
  61. 61.
    Razafindralambo H, Paquot M, Baniel A et al. Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 1996; 73:149–151.CrossRefGoogle Scholar
  62. 62.
    Rodrigues LR, Teixeira JA, van der Mei H. Response surface optimization of the medium components for the production of biosurfactants by Probiotic bacteria. Process Biochem 2006; 41(1):1–10.CrossRefGoogle Scholar
  63. 63.
    Ron EZ, Rosenberg E. Natural roles of biosurfactants. Environm Microbiol 2001; 3:229–236.CrossRefGoogle Scholar
  64. 64.
    Rufino RD. Produção de Biosurfactante por Candida lipolytica. M.Sc. Dissertation. Federal University of Pernambuco, Brazil: 2006Google Scholar
  65. 65.
    Rufino RD, arubbo LA, Campos-Takaki GM. Enhancement of Stability of Biosurfactant Produced by Candida lipolytica using as Substrate Industrial Residue. World J Microbiol Biotechnol 2007; 23(5):729–734.CrossRefGoogle Scholar
  66. 66.
    Rufino RD, Sarubbo LA, Barros Neto B et al. Experimental design for the production of tensio-active agent by Candida lipolytica. Journal of Indus. Microbiol Biotechnol 2008; 35(8):907–914.CrossRefGoogle Scholar
  67. 67.
    Sarubbo LA, Farias CBB, Campos-Takaki GM. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol 2007; 54:68–73.CrossRefPubMedGoogle Scholar
  68. 68.
    Sarubbo LA, Luna JM, Campos-Takaki GM. Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP1002. Eletronic J Biotechnol 2006; 9:400–406.Google Scholar
  69. 69.
    Sarubbo LA, Marçal MCR, Campos-Takaki GM. Comparative study of bioemulsifier production by Candida lipolytica strains. Braz Arch Biol Technol 1997; 40:707–720.Google Scholar
  70. 70.
    Sarubbo LA, Marçal MCR, Neves MLC et al. Bioemulsifier production in batch culture using glucose as carbon source by Candida lipolytica. Appl Biochem Biotechnol 2001; 95:59–67.CrossRefPubMedGoogle Scholar
  71. 71.
    Sarubbo LA, Porto ALF, Campos-Takaki GM. The use of babassu oil as substrate to produce bioemulsifiers by Candida lipolytica. Can J Microbiol 1999; 45:423–426.CrossRefPubMedGoogle Scholar
  72. 72.
    Sen R. Response surface optimization of the critical media components for production of surfactin. J Chem Tech Biotechnol 1997; 68:263–270.CrossRefGoogle Scholar
  73. 73.
    Sen R, Swaminathan T. Application of response-surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin. Appl Microbiol Biotechnol 1997; 47:358–363.CrossRefGoogle Scholar
  74. 74.
    Sen R, Swaminathan T. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem Enginee J 2004; 21(2):141–148.CrossRefGoogle Scholar
  75. 75.
    Shepherd R, Rockey J, Sutherland IW et al. Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 1995; 40:207–217.CrossRefPubMedGoogle Scholar
  76. 76.
    Singh M, Desai JD. Hydrocarbon emulsification by Candida tropicalis and Debaryomyces polymorphus. Ind J Experimental Biol 1989; 27:224–226.Google Scholar
  77. 77.
    Singh M, Sani VS, Adhikari DK et al. Production of bioemusifier by a SCP-producing strain of Candida tropicalis during hydrocarbon fermentation, Biotechnol letters 1990; 12:743–746.CrossRefGoogle Scholar
  78. 78.
    Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology. Biotechnol Adv 2007; 25:99–122.CrossRefPubMedGoogle Scholar
  79. 79.
    Souza-Sobrinho HB. Utilização de resíduos industriais como substratos de baixo custo para a produção de biossurfactante por Candida sphaerica. Recife 2007:99 Thesis. (Master’s in the Development of Environmental Processes). Universidade Católica de Pernambuco.Google Scholar
  80. 80.
    Souza-sobrinho HB, Rufino RD, Luna JM et al. Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP 0995. Process Biochem 2008; 43:912–917.CrossRefGoogle Scholar
  81. 81.
    Thanomsub B, Watcharachaipong T, Chotelersak K et al. Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J Appl Microbiol 2004; 96:588–592.CrossRefPubMedGoogle Scholar
  82. 82.
    Van Hamme JD, Singh A, Ward OnP. Recent Advances in Petroleum Microbiology Microbiol Mol Biol Rev 2003; 67(4):503–549.CrossRefGoogle Scholar
  83. 83.
    Vance-Harrop MH. Potencial Biotecnológico de Candida lipolytica na Produção de Biossurfactantes, nos processos de Remoção e Biossorção de Pireno (Derivado do Petróleo). Dsc. Thesis, Federal University of Pernambuco, Brazil: 2004.Google Scholar
  84. 84.
    Vance-Harrop MH, Gusmão NB, Campos-Takaki GM. New bioemulsifiers produced by Candida lipolytica using d-glucose and babassu oil as carbon sources Braz J Microbiol 2003; 34:120–123.Google Scholar
  85. 85.
    Velikonja J, Kosaric N. Biosurfactant in food applications. In: Kosaric N, ed. Biosurfactants: Production, Properties, Applications. New York: Marcel Dekker Inc., 1993:419–446.Google Scholar
  86. 86.
    Wayman M, Jenkins AD, Kormady AG. Biotechnology for oil and fat industry. J Am Oil Chem Soc 1984; 61:129–131.Google Scholar
  87. 87.
    Yang F.-C, Huang H.-C, Yang M.-J. The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enz. Microbial Technol 2003; 33(4):395–402.CrossRefGoogle Scholar
  88. 88.
    Zhou QH, Kosaric N. Utilization of Canola Oil and lactose to produce biosurfactant with Candida bombicola. J Amer Oil Chem Soc 1995; 72:67–71.CrossRefGoogle Scholar
  89. 89.
    Zinjarde S, Chinnathambi S, Lachke AH et al. Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini isoeletctric focusing unit. Lett Appl Microbiol 1997; 24:117–121.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Galba M. Campos-Takaki
    • 1
  • Leonie Asfora Sarubbo
    • 1
  • Clarissa Daisy C. Albuquerque
    • 1
  1. 1.Nucleus of Research in Environmental Sciences, Center of Sciences and TechnologyCatholic University of PernambucoRecife, PernambucoBrazil

Personalised recommendations