Biosurfactants pp 185-202 | Cite as

Selected Microbial Glycolipids: Production, Modification and Characterization

  • Olof Palme
  • Anja Moszyk
  • Dimitri Iphöfer
  • Siegmund Lang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)


This chapter deals with two types of biosurfactants that are not in the spotlight of general research: glycoglycerolipids and oligosaccharide lipids. The main focus is on glycolglycerolipids from marine bacteria like Microbacterium spec. DSM 12583, Micrococcus luteus (Hel 12/2) and Bacillus pumilus strain AAS3 and on oligosaccharide lipids from Tsukamurella spec. DSM 44370 and Nocardia corynebacteroides SM1. General and special structures, microbial producers, production conditions and chemo-enzymatic modifications as well as properties are outlined.


Acyl Chain Acylation Position Phospholipid Model Membrane Microbial Glycolipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends Biotechnol 2006; 24(11):509–515.CrossRefPubMedGoogle Scholar
  2. 2.
    Van Bogaert IN, Saerens K, De Muynck C et al. Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 2007; 76(1):23–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Whang LM, Liu PW, Ma CC et al. Application of biosurfactants, rhamnolipid and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 2008; 151(1):155–163.CrossRefPubMedGoogle Scholar
  4. 4.
    Stipcevic T, Piljac A, Piljac G. Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 2006; 32(1):24–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Hardin R, Pierre J, Schulze R et al. Sophorolipids improve sepsis survival: effects of dosing and derivatives. J Surg Res 2007; 142(2):314–319.CrossRefPubMedGoogle Scholar
  6. 6.
    Rodrigues L, Banat IM, Teixeira J et al. Biosurfactants: potential applications in medicine. J Antimicrob Chemother 2006; 57(4):609–618.CrossRefPubMedGoogle Scholar
  7. 7.
    Nitschke M, Costa SG, Contiero J. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 2005; 21(6):1593–1600.CrossRefPubMedGoogle Scholar
  8. 8.
    Fukuoka T, Morita T, Konishi M et al. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnol Lett 2007; 29(7):1111–1118.CrossRefPubMedGoogle Scholar
  9. 9.
    Lang S, Trowitzsch-Kienast W. In: Biotenside. Stuttgart, Leipzig, Wiesbaden: B.G. Teubner GmbH, 2002.Google Scholar
  10. 10.
    Lang S. Surfactants produced by microorganisms. In: Holmberg K, ed. Novel Surfactants-Preparation, Applications and Biodegradability, 2nd ed. New York, Basel: Marcel Dekker Inc, 2003:279–315.Google Scholar
  11. 11.
    Hölzl G, Dörmann P. Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 2007; 46:225–243.CrossRefPubMedGoogle Scholar
  12. 12.
    Terasaki M, Itabashi Y. Glycolipid acyl hydrolase activity in the brown alga Cladosiphon okamuranus tokida. Biosci Biotechnol Biochem 2003; 67(9):1986–1989.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee IA, Popov AM, Sanina NM et al. Morphological and immunological characterization of immunostimulatory complexes based on glycoglycerolipids from Laminaria japonica. Acta Biochim Pol 2004; 51(1):263–272.PubMedGoogle Scholar
  14. 14.
    Popova AV, Hincha DK. Effects of the sugar headgroup of a glycoglycerolipid on the phase behavior of phospholipid model membranes in the dry state. Glycobiology 2005; 15(11):1150–1155.CrossRefPubMedGoogle Scholar
  15. 15.
    Rog T, Murzyn K, Gurbiel R et al. Effects of phospholipid unsaturation on the bilayer nonpolar region: a molecular simulation study. J Lipid Res 2004; 45:326–336.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu J, Long L, Song Y et al. A new unsaturated glycoglycerolipid from a cultured marine dinoflagellate Amphidinium carterae. Chem Pharm Bull 2005; 53(3):330–332.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang FL, Lu CP, Chen CS et al. Structural determination of the polar glycoglycerolipids from thermophilic bacteria Meiothermus taiwanensis. Eur J Biochem 2004; 271:4545–4551.CrossRefPubMedGoogle Scholar
  18. 18.
    Sørensen PG, Cox RP, Miller M. Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 2008; 95:191–196.CrossRefPubMedGoogle Scholar
  19. 19.
    Brandenburg K, Wagner F, Müller M et al. Physicochemical characterization and biological activity of a glycoglycerolipid from Mycoplasma fermentans. J Biochem 2003; 270:3271–3279.Google Scholar
  20. 20.
    Shimizu T, Arai S, Imai H et al. Glycoglycerolipid from the membranes of acholeplasma laidlawii binds to human immunodeficiency virus-1 (HIV-1) and accelerates its entry into cells. Curr Microbiol 2004; 48:182–188.CrossRefPubMedGoogle Scholar
  21. 21.
    Colombo D, Compostella F, Ronchettia F et al. Inhibitory effect of stabilized analogues of glycoglycerolipids on epstein-barr virus activation and mouse skin tumor promotion. Cancer Lett 2002; 186:37–41.CrossRefPubMedGoogle Scholar
  22. 22.
    Colombo D, Frachini L, Toma L. Cyclic and branched acyl chain galactoglycerolipids and their effect on antitumor-promoting activity. Eur J Med Chem 2006; 41:1456–1463.CrossRefPubMedGoogle Scholar
  23. 23.
    Wicke C, Hüners M, Wray V et al. Production and structure elucidation of glycoglycerolipids from a marine sponge-associated microbacterium species. J Nat Prod 2000; 63:621–626.CrossRefPubMedGoogle Scholar
  24. 24.
    Lang S, Beil W, Tokuda H et al. Improved production of bioactive glucosylmannosyl-glycerolipid by sponge-associated Microbacterium species. Mar Biotechnol 2004; 6:152–156.PubMedGoogle Scholar
  25. 25.
    Ramm W, Schatton W, Wagner-Döbler I et al. Diglucosyl-glycerolipids from the marine sponge-associated bacillus pumilus strain AAS3: their production, enzymatic modification and properties. Appl Microbiol Biotechnol 2004; 64:497–504.CrossRefPubMedGoogle Scholar
  26. 26.
    Inada Y. Manufacture of glycerophosphorylcholine from phosphatidylcholine with modified lipase. Japanese Patent 1996; JP 63105685 A2 880510.Google Scholar
  27. 27.
    Haas MJ, Cichowicz DJ, Phillips J et al. The hydrolysis of phosphatidylcholine by an immobilized lipases: optimization of hydrolysis in organic solvents. J Am Oil Chem Soc 1993; 70:111–117.CrossRefGoogle Scholar
  28. 28.
    Lockhoff O. Glycolipide als immunmodulatoren—synthesen und eigenschaften. Angew Chem 1991; 103:1639–1649.CrossRefGoogle Scholar
  29. 29.
    Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin 2001; 7:167–202.Google Scholar
  30. 30.
    Zughaier SM, Lindner B, Howe J et al. Physicochemical characterization and biological activity of lipooligosaccharides and lipid A from neisseria meningitidis. J Endotoxin Res 2007; 13(6):343–357.CrossRefPubMedGoogle Scholar
  31. 31.
    Dzieciatkowska M, Brochu D, Belkum AV et al. Mass spectrometric analysis of intact lipooligosaccharide: direct evidence for O-acetylated sialic acids and discovery of O-linked glycine expressed by campylobacter jejuni. Biochemistry 2007; 46(50):14704–14714.CrossRefPubMedGoogle Scholar
  32. 32.
    Leone S, Izzo V, Silipo A et al. A novel type of highly negatively charged lipooligosaccharide from Pseudomonas stutzeri OX1 possessing two 4,6-O-(1-carboxy)-ethylidene residues in the outer core region. Eur J Biochem 2004; 271(13):2691–2704.CrossRefPubMedGoogle Scholar
  33. 33.
    Silipo A, Lanzetta R, Parrilli M et al. The complete structure of the core carbohydrate backbone from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora type strain IAM 12662T. Carbohydr Res 2005; 340(8):1475–1482.CrossRefPubMedGoogle Scholar
  34. 34.
    Pask-Hughes RA, Shaw N. Glycolipids from some extreme thermophilic bacteria belonging to the genus thermus. J Bacteriol 1982; 149:54–58.PubMedGoogle Scholar
  35. 35.
    Esch SW, Morton MD, Williams TD et al. A novel trisaccharide glycolipid biosurfactant containing trehalose bears ester-linked hexanoate, succinate and acyloxyacyl moieties: NMR and MS characterization of the underivatized structure. Carbohydr Res 1999; 319(1–4):112–123.CrossRefPubMedGoogle Scholar
  36. 36.
    Powalla M, Lang S, Wray V. Penta-and disaccharide lipid formation by nocardia corynebacteroides grown on n-alkanes. Appl Microbiol Biotechnol 1989; 31:473–479.CrossRefGoogle Scholar
  37. 37.
    Vollbrecht E, Heckmann R, Wray V et al. Production and structure elucidation of di-and oligosaccharide lipids (biosurfactants) from tsukamurella sp. nov. Appl Microbiol Biotechnol 1998; 50:530–537.CrossRefPubMedGoogle Scholar
  38. 38.
    Kim JS, Powalla M, Lang S et al. Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 1990; 13(4):257–266.CrossRefPubMedGoogle Scholar
  39. 39.
    Vollbrecht E, Rau U, Lang S. Microbial conversion of vegetable oils into surface-active di-, tri-and tetrasaccharide lipids (biosurfactants) by the bacterial strain tsukamurella spec. Fett/Lipid 1999; 101:389–394.CrossRefGoogle Scholar
  40. 40.
    Langer O, Palme O, Wray V et al. Production and modification of bioactive biosurfactants. Proc Biochem 2006; 41(10): 2138–2145.CrossRefGoogle Scholar
  41. 41.
    Colombo D, Scala A, Taino IM et al. 1-O-, 2-O-and 3-O-β-glycosyl-sn-glycerols: structureantitumor-promoting activity relationship. Bioorg Medicinal Chem Letters 1996; 6:1187–1190.CrossRefGoogle Scholar
  42. 42.
    Colombo D, Franchini L, Toma L et al. Antitumor-promoting activity of simple models of galacto-glycerolipids with branched and unsaturated acyl chains. Eur J Medicinal Chem 2005; 40:69–74.CrossRefGoogle Scholar
  43. 43.
    Akihisa T, Tokuda H, Yasukawa K et al. Azaphilones, furanoisophtalides and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Agric Food Chem 2005; 53:562–565.CrossRefPubMedGoogle Scholar
  44. 44.
    Fukuda Y, Sakai K, Matsunaga S et al. Cancer chemopreventive activity of lupane-and oleanane-type triterpenoids from the cones of liquidamber styraciflua. Chem Biodivers 2005; 2:421–8.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Olof Palme
    • 1
  • Anja Moszyk
    • 1
  • Dimitri Iphöfer
    • 2
  • Siegmund Lang
    • 2
  1. 1.Biotechnology Group Institute of Biochemistry and BiotechnologyTechnical University of BraunschweigBraunschweigGermany
  2. 2.Institute of Biochemistry and Biotechnology, Biotechnology GroupTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations