Screening Concepts for the Isolation of Biosurfactant Producing Microorganisms

  • Vanessa Walter
  • Christoph Syldatk
  • Rudolf Hausmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 672)


This chapter gives an overview of current methods for the isolation of biosurfactant producing microbes. The common screening methods for biosurfactants are presented.

Sampling and isolation of bacteria are the basis for screening of biosurfactant producing microbes. Hydrocarbon-contaminated sites are the most promising for the isolation of biosurfactant producing microbes, but many strains have also been isolated from undisturbed sites.

In subsequent steps the isolates have to be characterized in order to identify the strains which are interesting for a further investigation. Several techniques have been developed for identifying biosurfactant producing strains. Most of them are directly based on the surface or interfacial activity of the culture supernatant. Apart from that, some screening methods explore the hydrophobicity of the cell surface. This trait also gives an indication on biosurfactant production.

In recent years automation and miniaturization have led to the development of high throughput methods for screening. High throughput screening (HTS) for analyzing large amounts of potential candidates or whole culture collections is reflected in the end. However, no new principals have been introduced by HTS methods.


High Throughput Screening Cladosporium Resinae Critical Micelle Dilution Biosurfactant Produce Microorganism Drop Collapse Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ron E, Rosenberg E. Natural roles of biosurfactants. Environ Microbiol 2001; 3(4):229–236.CrossRefPubMedGoogle Scholar
  2. 2.
    Batista S, Mounteer A, Amorim F et al. Isolation and characterization of biosurfactant/bioemulsifierproducing bacteria from petroleum contaminated sites. Bioresour Technol 2006; 97(6):868–875.CrossRefPubMedGoogle Scholar
  3. 3.
    Willumsen P, Karlson U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 1997; 7(5):415–423.CrossRefGoogle Scholar
  4. 4.
    Chen C, Baker S, Darton R. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J Microbiol Methods 2007; 70:503–510.CrossRefPubMedGoogle Scholar
  5. 5.
    Mercadé M, Monleón L, de Andrés C et al. Screening and selection of surfactant-producing bacteria from waste lubricating oil. J Appl Bacteriol 1996; 81(2):161–166.Google Scholar
  6. 6.
    Schulz D, Passeri A, Schmidt M et al. Marine biosurfactants.1. Screening for biosurfactants among crude-oil degrading marine microorganisms from the North-Sea. Z Naturforsch (C) 1991; 46(3–4):197–203.Google Scholar
  7. 7.
    Rahman K, Rahman T, McClean S et al. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 2002; 18:1277–1281.CrossRefPubMedGoogle Scholar
  8. 8.
    Abalos A, Maximo F, Manresa M et al. Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10. J Chem Tech Biotech 2002; 77:777–784.CrossRefGoogle Scholar
  9. 9.
    Bodour A, Drees K, Maier R. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 2003; 69(6):3280–3287.CrossRefPubMedGoogle Scholar
  10. 10.
    Denger K, Schink B. New halo and thermotolerant fermenting bacteria producing surface-active compounds. Appl Microbiol Biotechnol 1995; 44(1–2):161–166.CrossRefGoogle Scholar
  11. 11.
    Bento F, Camargo F, Okeke B et al. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 2005; 160(3):249–255.CrossRefGoogle Scholar
  12. 12.
    Huy N, Jin S, Amada K et al. Characterization of petroleum-degrading bacteria from oil-contaminated sites in Vietnam. J Biosci Bioeng 1999; 88(1):100–102.CrossRefPubMedGoogle Scholar
  13. 13.
    Al-Mallah M, Goutx M, Mille G et al. Production of emulsufying agents during growth of a marine Alteromonas in sea water with eicosane as carbon source, a solid hydrocarbon. Oil Chem Pollut 1990; 6:289–305.CrossRefGoogle Scholar
  14. 14.
    Muriel J, Bruque J, Olias J et al. Production of biosurfactants by Cladosporium resinae. Biotechnol Lett 1996; 18(3):235–240.CrossRefGoogle Scholar
  15. 15.
    Bodour A, Miller-Maier R. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 1998; 32(3):273–280.CrossRefGoogle Scholar
  16. 16.
    Lang S, Wagner F. Biosurfactants from marine microorganisms. In: Kosaric N, ed. Biosurfactants: Production, Properties, Applications. New York: Marcel Dekker, 1993:391–417.Google Scholar
  17. 17.
    Yakimov MM, Golyshin PN, Lang S et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 1998; 48:339–348.PubMedGoogle Scholar
  18. 18.
    Ramm W, Schatton W, Wagner-Dobler I et al. Diglucosyl-glycerolipids from the marine sponge-associated Bacillus pumilus strain AAS3: their production, enzymatic modification and properties. Appl Microbiol Biotechnol 2004; 64(4):497–504.CrossRefPubMedGoogle Scholar
  19. 19.
    Yakimov M, Timmis K, Wray V et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 1995; 61(5):1706–1713.PubMedGoogle Scholar
  20. 20.
    Persson A, Molin G. Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 1987; 26(5):439–442.CrossRefGoogle Scholar
  21. 21.
    Enfors S, Molin G, Ternstrom A. Effect of packaging under carbon-dioxide, nitrogen or air on the microbial-flora of pork stored at 4°C. J Appl Bacteriol 1979; 47(2):197–208.PubMedGoogle Scholar
  22. 22.
    Giani C, Wullbrandt D, Rothert R et al. Hoechst Aktiengesellschaft, Frankfurt am Main. Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-Rhamnose. US patent 1997; 5:658–793.Google Scholar
  23. 23.
    Hanson K, Desai J, Desai A. A rapid and simple screening technique for potential crude-oil degrading microorganisms. Biotechnol Techniques 1993; 7(10):745–748.CrossRefGoogle Scholar
  24. 24.
    Lin S. Biosurfactants: Recent advances. J Chem Tech Biotech 1996; 66(2):109–120.CrossRefGoogle Scholar
  25. 25.
    Duvnjak Z, Cooper D, Kosaric N. Production of Surfactant by Arthrobacter paraffineus ATCC 19558. Biotechnol Bioeng 1982; 24(1):165–175.CrossRefPubMedGoogle Scholar
  26. 26.
    Bosch M, Robert M, Mercadé M et al. Surface-active compounds on microbial cultures. Tenside Surfactants Detergents 1988; 25:208–211.Google Scholar
  27. 27.
    Makkar R, Cameotra S. Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 1997; 18(1):37–42.CrossRefGoogle Scholar
  28. 28.
    Morikawa M, Hirata Y, Imanaka T. A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 2000; 1488(3):211–218.PubMedGoogle Scholar
  29. 29.
    Jain D, Collins-Thompson D, Lee H et al. A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 1991; 13(4):271–279.CrossRefGoogle Scholar
  30. 30.
    Tadros T. Adsorption of surfactants at the air/liquid and liquid/liquid interfaces. In: Applied Surfactants: Principles and Applications. Weinheim: Wiley VCH, 2005:81–82.Google Scholar
  31. 31.
    Tuleva B, Christova N, Jordanov B et al. Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Z Naturforsch (C) 2005; 60(7–8):577–582.Google Scholar
  32. 32.
    Wei Y, Chou C, Chang J. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J. 2005; 27(2):146–154.CrossRefGoogle Scholar
  33. 33.
    Chen S, Lu W, Wei Y et al. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 2007; 23(3):661–666.CrossRefPubMedGoogle Scholar
  34. 34.
    Das M, Das S, Mukherjee R. Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkanes and sugars. Bioresour Technol 1998; 63(3):231–235.CrossRefGoogle Scholar
  35. 35.
    Cooper D, Goldenberg B. Surface-active agents from 2 Bacillus species. Appl Environ Microbiol 1987; 53(2):224–229.PubMedGoogle Scholar
  36. 36.
    Plaza G, Zjawiony I, Banat I. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated bioremediated soils. J Petro Science Eng 2006; 50(1):71–77.CrossRefGoogle Scholar
  37. 37.
    Cooper D. Biosurfactants. Microbiol Sci 1986; 3(5):145–149.PubMedGoogle Scholar
  38. 38.
    Dilmohamud B, Seeneevassen J, Rughooputh S et al. Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer. Euro J Physics 2005; 26(6):1079–1084.CrossRefGoogle Scholar
  39. 39.
    Nierderhauser D, Bartell F. A corrected table for the calculation of boundary tensions by the pendent drop method. Baltimore: American Petroleum Institute, 1950.Google Scholar
  40. 40.
    Van der Vegt W, Van der Mei H, Noordmans J et al. Assessment of bacterial biosurfactant production through axisymmetrical drop shape-analysis by profile. Appl Microbiol Biotechnol 1991; 35(6):766–770.CrossRefGoogle Scholar
  41. 41.
    Rotenberg Y, Boruvka L, Neumann A. Determination of surface-tension and contact-angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Science 1983; 93(1):169–183.CrossRefGoogle Scholar
  42. 42.
    Maczek J, Junne S, Götz P. Examining biosurfactant producing bacteria—an example for an automated search for natural compounds. Application Note CyBio AG, 2007.Google Scholar
  43. 43.
    Tugrul T, Cansunar E. Detecting surfactant-producing microorganisms by the drop-collapse test. World J Microbiol Biotechnol 2005; 21(6–7):851–853.CrossRefGoogle Scholar
  44. 44.
    Youssef N, Duncan K, Nagle D et al. Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 2004; 56(3):339–347.CrossRefPubMedGoogle Scholar
  45. 45.
    Vaux D, Cottingham M. Method and apparatus for measuring surface configuration. patent number WO 2007/039729 A1, 2001.Google Scholar
  46. 46.
    Neu T, Poralla K. Emulsifying agents from bacteria isolated during screening for cells with hydrophobic surfaces. Appl Microbiol Biotechnol 1990; 32(5):521–525.Google Scholar
  47. 47.
    Christova N, Tuleva B, Lalchev Z et al. Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z Naturforsch [C] 2004; 59(1–2):70–74.Google Scholar
  48. 48.
    Van Dyke M, Gulley S, Lee H et al. Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J Ind Microbiol 1993; 11(3):163–170.CrossRefGoogle Scholar
  49. 49.
    Pruthi V, Cameotra S. Rapid identification of biosurfactant-producing bacterial strains using a cell surface hydrophobicity technique. Biotechnol Techniques 1997; 11(9):671–674.CrossRefGoogle Scholar
  50. 50.
    Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons—a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 1980; 9(1):29–33.CrossRefGoogle Scholar
  51. 51.
    Smyth C, Jonsson P, Olsson E et al. Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun 1978; 22(2):462–472.PubMedGoogle Scholar
  52. 52.
    Rosenberg M. Bacterial adherence to polystyrene—a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 1981; 42(2):375–377.PubMedGoogle Scholar
  53. 53.
    Lindahl M, Faris A, Wadstrom T et al. A new test based on salting out to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 1981; 677(3–4):471–476.PubMedGoogle Scholar
  54. 54.
    Siegmund I, Wagner F. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Techniques 1991; 5(4):265–268.CrossRefGoogle Scholar
  55. 55.
    Gunther N, Nunez A, Fett W et al. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 2005; 71(5):2288–2293.CrossRefPubMedGoogle Scholar
  56. 56.
    Tuleva BK, Ivanov GR, Christova NE. Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch [C]—Journal of Biosciences 2002; 57(3—4):356–360.Google Scholar
  57. 57.
    Tahzibi A, Kamal F, Assadi M. Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran Biomed J 2004; 8(1):25–31.Google Scholar
  58. 58.
    Mulligan C, Cooper D, Neufeld R. Selection of microbes producing biosurfactants in media without hydrocarbons. J Fermentation Technol 1984; 62(4):311–314.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Vanessa Walter
    • 1
  • Christoph Syldatk
    • 2
  • Rudolf Hausmann
    • 2
  1. 1.Walter—Institute of Engineering in Life Sciences, Department of Technical BiologyUniversity of KarlsruheKarlsruheGermany
  2. 2.Institute of Engineering in Life Sciences Department Technical BiologyUniversity of KarlsruheKarlsruheGermany

Personalised recommendations