Stem Cells and Cancer

  • Shi-Ming Tu
Part of the Cancer Treatment and Research book series (CTAR, volume 154)


In principle, any cell with stem-cell properties is poised to become malignant given the right conditions and circumstances. The stem-cell characteristic is what gives cancer its free rein.


Stem Cell Telomere Length Severe Combine Immunodeficiency Disease Tasmanian Devil Progenitor Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McCallum H, Tompkins DM, Jones M et al (2007) Distribution and impacts of Tasmanian devil facial tumor disease. Ecohealth 4:318–325CrossRefGoogle Scholar
  2. 2.
    Pearse A-M, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549CrossRefPubMedGoogle Scholar
  3. 3.
    Siddle HV, Kreiss A, Eldridge MD et al (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci USA 104:16221–16226CrossRefPubMedGoogle Scholar
  4. 4.
    Loh R, Bergfeld J, Hayes D et al (2006) The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Vet Pathol 43:890–895CrossRefPubMedGoogle Scholar
  5. 5.
    Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209CrossRefPubMedGoogle Scholar
  6. 6.
    Barsky SH, Ye Y, Xiao Y, Yearley K (2008) Insights into the stem cell origin of human cancers by studying a registry of bone marrow and other organ transplant recipients who later developed solid tumors [abstr]. Am Soc Clin Oncol 580 [Abstract 11010]Google Scholar
  7. 7.
    Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM (2006) Gene therapy: therapeutic gene causing lymphoma. Nature 440:1123CrossRefPubMedGoogle Scholar
  8. 8.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefPubMedGoogle Scholar
  9. 9.
    Marshall E (2003) Second child in French trial is found to have leukemia. Science 299:320CrossRefPubMedGoogle Scholar
  10. 10.
    Boyd CN, Ramberg RC, Thomas ED (1982) The incidence of recurrence of leukemia in donor cells after allogeneic bone marrow transplantation. Leuk Res 6:833–837CrossRefPubMedGoogle Scholar
  11. 11.
    Cooley LD, Sears DA, Udden MM, Harrison WR, Baker KR (2000) Donor cell leukemia: report of a case occurring 11 years after allogeneic bone marrow transplantation and review of the literature. Am J Hematol 63:46–53CrossRefPubMedGoogle Scholar
  12. 12.
    Hambach L, Eder M, Dammann E et al (2001) Donor cell-derived acute myeloid leukemia developing 14 months after matched unrelated bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant 28:705–707CrossRefPubMedGoogle Scholar
  13. 13.
    Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331CrossRefPubMedGoogle Scholar
  14. 14.
    Warner KE, Mackay JL (2008) Smoking cessation treatment in a public-health context [comment]. Lancet 371:1976–1978CrossRefPubMedGoogle Scholar
  15. 15.
    Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571CrossRefPubMedGoogle Scholar
  16. 16.
    Cosme-Blanco W, Shen MF, Lazar AJ et al (2007) Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 8:497–503CrossRefPubMedGoogle Scholar
  17. 17.
    Morrison S (2006) Stem cell self-renewal, cancer cell proliferation, and aging. In: 59th annual symposium on cancer research: stem cells in cancer and regenerative medicine, Houston, TX, October 27–29, p 37Google Scholar
  18. 18.
    Janzen V, Forkert R, Fleming H et al (2006) Stem cell aging modified by the cyclin dependent kinase inhibitor, p16INK4a. Nature 443:421–426PubMedGoogle Scholar
  19. 19.
    Krishnamurthy J, Ransey M, Ligon K, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces age-dependent decline in islet regenerative potential [letter]. Nature 443:453–457CrossRefPubMedGoogle Scholar
  20. 20.
    Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16Ink4a expression reduces forebrain progenitor function and neurogenesis during aging. Nature 443:448–452CrossRefPubMedGoogle Scholar
  21. 21.
    Ornish D, Lin J, Daubenmier J et al (2008) Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol 9:1048–1057, Erratum in Lancet Oncol 2008;9(12):1124CrossRefPubMedGoogle Scholar
  22. 22.
    Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6:637–645CrossRefPubMedGoogle Scholar
  23. 23.
    Ju Z, Rudolph KL (2006) Telomeres and telomerase in cancer stem cells. Eur J Cancer 42:1197–1203CrossRefPubMedGoogle Scholar
  24. 24.
    Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309:1253–1256CrossRefPubMedGoogle Scholar
  25. 25.
    Fukasawa K, Wiener F, Vande Woude GF, Mai S (1997) Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15:1295–1302CrossRefPubMedGoogle Scholar
  26. 26.
    Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations