Stem Cells and Cancer

Part of the Cancer Treatment and Research book series (CTAR, volume 154)


In principle, any cell with stem-cell properties is poised to become malignant given the right conditions and circumstances. The stem-cell characteristic is what gives cancer its free rein.


Stem Cell Telomere Length Severe Combine Immunodeficiency Disease Tasmanian Devil Progenitor Stem Cell 


  1. 1.
    McCallum H, Tompkins DM, Jones M et al (2007) Distribution and impacts of Tasmanian devil facial tumor disease. Ecohealth 4:318–325CrossRefGoogle Scholar
  2. 2.
    Pearse A-M, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549CrossRefPubMedGoogle Scholar
  3. 3.
    Siddle HV, Kreiss A, Eldridge MD et al (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci USA 104:16221–16226CrossRefPubMedGoogle Scholar
  4. 4.
    Loh R, Bergfeld J, Hayes D et al (2006) The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Vet Pathol 43:890–895CrossRefPubMedGoogle Scholar
  5. 5.
    Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209CrossRefPubMedGoogle Scholar
  6. 6.
    Barsky SH, Ye Y, Xiao Y, Yearley K (2008) Insights into the stem cell origin of human cancers by studying a registry of bone marrow and other organ transplant recipients who later developed solid tumors [abstr]. Am Soc Clin Oncol 580 [Abstract 11010]Google Scholar
  7. 7.
    Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM (2006) Gene therapy: therapeutic gene causing lymphoma. Nature 440:1123CrossRefPubMedGoogle Scholar
  8. 8.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefPubMedGoogle Scholar
  9. 9.
    Marshall E (2003) Second child in French trial is found to have leukemia. Science 299:320CrossRefPubMedGoogle Scholar
  10. 10.
    Boyd CN, Ramberg RC, Thomas ED (1982) The incidence of recurrence of leukemia in donor cells after allogeneic bone marrow transplantation. Leuk Res 6:833–837CrossRefPubMedGoogle Scholar
  11. 11.
    Cooley LD, Sears DA, Udden MM, Harrison WR, Baker KR (2000) Donor cell leukemia: report of a case occurring 11 years after allogeneic bone marrow transplantation and review of the literature. Am J Hematol 63:46–53CrossRefPubMedGoogle Scholar
  12. 12.
    Hambach L, Eder M, Dammann E et al (2001) Donor cell-derived acute myeloid leukemia developing 14 months after matched unrelated bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant 28:705–707CrossRefPubMedGoogle Scholar
  13. 13.
    Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331CrossRefPubMedGoogle Scholar
  14. 14.
    Warner KE, Mackay JL (2008) Smoking cessation treatment in a public-health context [comment]. Lancet 371:1976–1978CrossRefPubMedGoogle Scholar
  15. 15.
    Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571CrossRefPubMedGoogle Scholar
  16. 16.
    Cosme-Blanco W, Shen MF, Lazar AJ et al (2007) Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 8:497–503CrossRefPubMedGoogle Scholar
  17. 17.
    Morrison S (2006) Stem cell self-renewal, cancer cell proliferation, and aging. In: 59th annual symposium on cancer research: stem cells in cancer and regenerative medicine, Houston, TX, October 27–29, p 37Google Scholar
  18. 18.
    Janzen V, Forkert R, Fleming H et al (2006) Stem cell aging modified by the cyclin dependent kinase inhibitor, p16INK4a. Nature 443:421–426PubMedGoogle Scholar
  19. 19.
    Krishnamurthy J, Ransey M, Ligon K, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces age-dependent decline in islet regenerative potential [letter]. Nature 443:453–457CrossRefPubMedGoogle Scholar
  20. 20.
    Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16Ink4a expression reduces forebrain progenitor function and neurogenesis during aging. Nature 443:448–452CrossRefPubMedGoogle Scholar
  21. 21.
    Ornish D, Lin J, Daubenmier J et al (2008) Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol 9:1048–1057, Erratum in Lancet Oncol 2008;9(12):1124CrossRefPubMedGoogle Scholar
  22. 22.
    Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6:637–645CrossRefPubMedGoogle Scholar
  23. 23.
    Ju Z, Rudolph KL (2006) Telomeres and telomerase in cancer stem cells. Eur J Cancer 42:1197–1203CrossRefPubMedGoogle Scholar
  24. 24.
    Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309:1253–1256CrossRefPubMedGoogle Scholar
  25. 25.
    Fukasawa K, Wiener F, Vande Woude GF, Mai S (1997) Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15:1295–1302CrossRefPubMedGoogle Scholar
  26. 26.
    Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations