Cancer Targets

Part of the Cancer Treatment and Research book series (CTAR, volume 154)


What ultimately determines the malignant phenotype depends not only on the nature of the cancer targets but also on the type of stem cells in which the cancer targets develop.


Stem Cell Prostate Cancer Ovarian Cancer Cancer Stem Cell Malignant Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tu S-M, Lin S-H, Logothetis CJ (2002) Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol 3:508–513CrossRefPubMedGoogle Scholar
  2. 2.
    Knudson AG Jr (1977) Mutation and cancer in man. Cancer 39(4 Suppl):1882–1886CrossRefPubMedGoogle Scholar
  3. 3.
    Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146CrossRefPubMedGoogle Scholar
  4. 4.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767CrossRefPubMedGoogle Scholar
  5. 5.
    Sjöblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274CrossRefPubMedGoogle Scholar
  6. 6.
    Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806CrossRefPubMedGoogle Scholar
  7. 7.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812CrossRefPubMedGoogle Scholar
  8. 8.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850CrossRefPubMedGoogle Scholar
  9. 9.
    Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2:731–737CrossRefPubMedGoogle Scholar
  10. 10.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefPubMedGoogle Scholar
  11. 11.
    Marshall E (2003) Gene therapy: second child in French trial is found to have leukemia [News of the Week]. Science 299:320CrossRefPubMedGoogle Scholar
  12. 12.
    Welm AL, Kim S, Welm BE et al (2005) MET and MYC cooperate in mammary tumorigenesis. Proc Natl Acad Sci USA 102:4324–4329CrossRefPubMedGoogle Scholar
  13. 13.
    Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347:1593–1603, Erratum in N Engl J Med 2003;348(7):674CrossRefPubMedGoogle Scholar
  14. 14.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715CrossRefPubMedGoogle Scholar
  15. 15.
    Sidransky D, Frost P, Von Eschenbach A et al (1992) Clonal origin bladder cancer. N Engl J Med 326:737–740CrossRefPubMedGoogle Scholar
  16. 16.
    Yu YP, Landsittel D, Jing L et al (2004) Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22:2790–2799CrossRefPubMedGoogle Scholar
  17. 17.
    Tsai YC, Simoneau AR, Spruck CH III et al (1995) Mosaicism in human epithelium: macroscopic monoclonal patches cover the urothelium. J Urol 153:1697–1700CrossRefPubMedGoogle Scholar
  18. 18.
    Li Y, Welm B, Podsypanina K et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858CrossRefPubMedGoogle Scholar
  19. 19.
    Gunsilius E, Duba H-C, Petzer AL et al (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355:1688–1691CrossRefPubMedGoogle Scholar
  20. 20.
    Biernaux C, Loos M, Sels A et al (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86:3118–3122PubMedGoogle Scholar
  21. 21.
    Bose S, Deininger M, Gora-Tybor J et al (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92:3362–3367PubMedGoogle Scholar
  22. 22.
    Miyamoto T, Weissman IL, Akashi K (2000) AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 97:7521–7526CrossRefPubMedGoogle Scholar
  23. 23.
    Firestein GS, Echeverri F, Yeo M et al (1997) Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 94:10895–10900CrossRefPubMedGoogle Scholar
  24. 24.
    Pap T, Franz JK, Hummel KM et al (2000) Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res 2:59–64CrossRefPubMedGoogle Scholar
  25. 25.
    Werely CJ, Heyns CF, van Velden DJ et al (1996) DNA fingerprint detection of somatic mutations in benign prostatic hyperplasia and prostatic adenocarcinoma. Genes Chromosomes Cancer 17:31–36CrossRefPubMedGoogle Scholar
  26. 26.
    Shah US, Getzenberg RH (2004) Fingerprinting the diseased prostate: associations between BPH and prostate cancer. J Cell Biochem 91:161–169CrossRefPubMedGoogle Scholar
  27. 27.
    Sampson JA (1925) Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Arch Surg 10:1–72Google Scholar
  28. 28.
    Varma R, Rollason T, Gupta JK et al (2004) Endometriosis and the neoplastic process. Reproduction 127:293–304CrossRefPubMedGoogle Scholar
  29. 29.
    Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827CrossRefPubMedGoogle Scholar
  30. 30.
    McAllister SS, Gifford AM, Greiner AL et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005CrossRefPubMedGoogle Scholar
  31. 31.
    Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 449:557–563CrossRefPubMedGoogle Scholar
  32. 32.
    Kurose K, Hoshaw-Woodard S, Adeyinka A et al (2001) Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 10:1907–1913CrossRefPubMedGoogle Scholar
  33. 33.
    Man Y, Mannion C, Kuhls E et al (2001) Allelic losses at 3p and 11p are detected in both epithelial and stromal components of cervical small-cell neuroendocrine carcinoma. Appl Immunohistochem Mol Morphol 9:340–345CrossRefPubMedGoogle Scholar
  34. 34.
    Moinfar F, Man YG, Arnould L et al (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566PubMedGoogle Scholar
  35. 35.
    van den Brink GR, Offerhaus GJ (2007) The morphogenetic code and colon cancer development [review]. Cancer Cell 11:109–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations