Skip to main content

Factors Impacting the Tumor Localization and Distribution of Antibody-Based Therapeutics in Oncology

  • Chapter
  • First Online:
Development of Antibody-Based Therapeutics
  • 2350 Accesses

Abstract

Distribution of antibody-based therapeutics from the vascular space to the target tumor compartment is an important consideration in designing antibody-based oncology drugs. Mouse tumor models represent a reasonable approach for exploring antibody biodistribution. In general, a number of factors such as molecular size, antibody dose, and the length of in vivo tumor exposure can influence antibody localization and tumor penetration. With a few exceptions, the current available data indicate that at clinically relevant doses (ranging from 1 to 10 mg/kg) and over a reasonable clinical exposure time (days rather than hours), antibody biodistribution into tumors is unlikely to be the most significant factor hindering the clinical efficacy of antibody-based therapeutics. Other factors such as antigenic heterogeneity leading to variable distribution of antibody drugs into the tumor, or intrinsic resistance to antibody-mediated effects, may play a far greater role in the resistance properties impacting the antibody efficacy profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman ME, Pawlowski D, Wittrup KD (2008) Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 7:2233–2240

    Article  PubMed  CAS  Google Scholar 

  • Baker JHE, Lindquist KE, Huxham LA et al (2008) Direct visualisation of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin Cancer Res 14:2171–2179

    Article  PubMed  CAS  Google Scholar 

  • Berndorff D, Borkowski S, Sieger S et al (2005) Radioimunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best suited radioimmunoconjugate. Clin Cancer Res 11(19 suppl):7053s–7063

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal RD, Fand I, Sharkey RM et al (1991) The effect of antibody protein dose on the uniformity of tumor distribution of radioantibodies: an autoradiography study. Cancer Immunol Immunother 33:351–358

    Article  PubMed  CAS  Google Scholar 

  • Calvete JA, Newell DR, Wright AF et al (1994) In vitro and in vivo anti-tumor activity of Zeneca ZD0490, a recombinant ricin A-chain immunotoxin for the treatment of colorectal cancer. Cancer Res 54:4684–4690

    PubMed  CAS  Google Scholar 

  • Carver BS, Pandolfi PP (2006) Mouse modelling in oncologic preclinical and translational research. Clin Cancer Res 12:5305–5311

    Article  PubMed  CAS  Google Scholar 

  • Debinski W, Karlsson B, Lindholm L et al (1992) Monoclonal antibody C242-Pseudomonas Exotoxin A: a specific and potent immunotoxin with anti-tumor activity on a human colon xenograft in nude mice. J Clin Invest 90:405–411

    Article  PubMed  CAS  Google Scholar 

  • Dennis MS, Jin H, Dugger D et al (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254–261

    Article  PubMed  CAS  Google Scholar 

  • Duncan R (2009) Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev 61:1131–1148

    Article  PubMed  CAS  Google Scholar 

  • Epstein AL, Chem F-M, Taylor CR (1988) A novel method for the detection of necrotic lesions in human cancers. Cancer Res 48:5842–5848

    PubMed  CAS  Google Scholar 

  • Esteban JM, Colcher D, Sugarbaker P et al (1987) Quantitative and qualitative aspects of radiolocaliastion in colon cancer patients of intravenously administered Mab B72.3. Int J Cancer 39:50–59

    Article  PubMed  CAS  Google Scholar 

  • Fidarova EF, El-Emir E, Boxer GM et al (2008) Microdistribution of targeted, fluorescently labelled anti-carcinoembryonic antigen antibody in metastatic colorectal cancer: implications for radioimmunotherapy. Clin Cancer Res 14:2639–2646

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032

    PubMed  CAS  Google Scholar 

  • Juweid M, Neuman R, Paik C et al (1992) Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 52:5144–5153

    PubMed  CAS  Google Scholar 

  • Lee CM, Tannock IF (2010) The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 10:255–266

    Article  PubMed  Google Scholar 

  • Liu C, Tadayoni BM, Bourret LA et al (1996) Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci USA 93:8618–8623

    Article  PubMed  CAS  Google Scholar 

  • Mayer A, Francis RJ, Sharma SK et al (2006) A phase 1 study of single administration of antibody-directed enzyme prodrug therapy with the recombinant anti-carcinoembryonic antigen antibody-enzyme fusion protein MFECP1 and a bis-iodo phenol mustard prodrug. Clin Cancer Res 12:6509–6516

    Article  PubMed  CAS  Google Scholar 

  • Mullamitha SA, Ton NC, Oarker GJM et al (2007) Phase 1 evaluation of a fully human anti-av integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin Cancer Res 13:2128–2135

    Article  PubMed  CAS  Google Scholar 

  • Rudnick SI, Adams GP (2009) Affinity and avidity in antibody-based tumor targeting. Cancer Biother Rad 24:155–161

    Article  CAS  Google Scholar 

  • Saleh MN, Sugarman S, Murray J et al (2000) Phase 1 trial of the anti-lewisY drug immunoconjugate BR96-doxorubicin in patients with Lewis Y-expressing epithelial tumors. J Clin Oncol 18:2282–2292

    PubMed  CAS  Google Scholar 

  • Scott AM, Lee F-T, Jones R et al (2005) A phase 1 trial of humanised monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res 11:4810–4817

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Therapeutics 8:2861–2871

    Article  CAS  Google Scholar 

  • Sugahara KN, Teesalu T, Karmali PP et al (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520

    Article  PubMed  CAS  Google Scholar 

  • Sugahara KN, Teesalu T, Karmali PP et al (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: Transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60:1421–1434

    Article  PubMed  CAS  Google Scholar 

  • Welt S, Divgi CR, Real FX et al (1990) Quantitative analysis of antibody localization in human metastatic colon cancer: a phase 1 study of monoclonal antibody A33. J Clin Oncol 8:1894–1906

    PubMed  CAS  Google Scholar 

  • Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    PubMed  CAS  Google Scholar 

  • Zahnd C, Kawe M, Stumpp MT et al (2010) Efficient tumor targeting with high affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 70:1595–1605

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Blakey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blakey, D.C. (2012). Factors Impacting the Tumor Localization and Distribution of Antibody-Based Therapeutics in Oncology. In: Tabrizi, M., Bornstein, G., Klakamp, S. (eds) Development of Antibody-Based Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5955-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5955-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5953-9

  • Online ISBN: 978-1-4419-5955-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics