Application of Population Pharmacokinetic-Pharmacodynamic Approaches in the Design of Translational Strategies for Development of Antibody-Based Therapeutics

  • Feng Jin


Population-based pharmacokinetic-pharmacodynamic (PK-PD) approaches have been successfully applied in various stages of drug development over the last few decades. The development of antibody-based therapeutics has benefited substantially from the utilization of population approaches. Moreover, almost all FDA-approved monoclonal antibody therapeutics have been evaluated using population approaches. In this chapter, application of population PK-PD methods will be reviewed in the context of translational strategies employed during the development of antibody-based therapeutics.


Diagnostic Plot Visual Predictive Check First Order Method PASI Score First Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aarons L (1999) Software for population pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 36:255–264PubMedCrossRefGoogle Scholar
  2. Bauer RJ, Guzy S (2004) Monte Carlo parametric expectation maximization (MC-PEM) method for analyzing population pharmacokinetic/pharmacodynamic data. In: D’Argenio DZ (ed) Advanced methods of pharmacokinetic and pharmacodynamic systems analysis. Kluwer Academic Publishers, Boston, pp 135–163CrossRefGoogle Scholar
  3. Bauer RJ, Guzy S, Ng C (2007) A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. AAPS J 9:E60–E83PubMedCrossRefGoogle Scholar
  4. Beal SL, Sheiner LB (1982) Estimating population kinetics. Crit Rev Biomed Eng 8:195–222PubMedGoogle Scholar
  5. Betts AM, Clark TH, Yang J, Treadway JL, Li M et al (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther 333:2–13PubMedCrossRefGoogle Scholar
  6. Coiffier B, Losic N, Ronn BB, Lepretre S, Pedersen LM et al (2010) Pharmacokinetics and pharmacokinetic/pharmacodynamic associations of ofatumumab, a human monoclonal CD20 antibody, in patients with relapsed or refractory chronic lymphocytic leukaemia: a phase 1–2 study. Br J Haematol 150:58–71PubMedGoogle Scholar
  7. Dartois C, Freyer G, Michallet M, Henin E, You B et al (2007) Exposure-effect population model of inolimomab, a monoclonal antibody administered in first-line treatment for acute graft-versus-host disease. Clin Pharmacokinet 46:417–432PubMedCrossRefGoogle Scholar
  8. Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Chapman and Hall, New YorkGoogle Scholar
  9. Davidian M, Giltinan DM (2003) Nonlinear models for repeated measurement data: an overview and update. J Agr Biol Environ Stat 8:387–419CrossRefGoogle Scholar
  10. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478PubMedCrossRefGoogle Scholar
  11. Duan JZ (2007) Applications of population pharmacokinetics in current drug labelling. J Clin Pharm Ther 32:57–79PubMedCrossRefGoogle Scholar
  12. Ette EI, Kelman AW, Howie CA, Whiting B (1995) Analysis of animal pharmacokinetic data: performance of the one point per animal design. J Pharmacokinet Biopharm 23:551–566PubMedCrossRefGoogle Scholar
  13. Ette EI, Sun H, Ludden TM (1998) Balanced designs in longitudinal population pharmacokinetic studies. J Clin Pharmacol 38:417–423PubMedGoogle Scholar
  14. Ette EI, Williams PJ (2004) Population pharmacokinetics II: estimation methods. Ann Pharmacother 38:1907–1915PubMedCrossRefGoogle Scholar
  15. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J et al (2009) Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol 65:1211–1228PubMedCrossRefGoogle Scholar
  16. Forrest A, Ballow CH, Nix DE, Birmingham MC, Schentag JJ (1993) Development of a population pharmacokinetic model and optimal sampling strategies for intravenous ciprofloxacin. Antimicrob Agents Chemother 37:1065–1072PubMedGoogle Scholar
  17. Frey N, Grange S, Woodworth T (2010) Population pharmacokinetic analysis of tocilizumab in patients with rheumatoid arthritis. J Clin Pharmacol 50:754–766PubMedCrossRefGoogle Scholar
  18. Guidance for industry: drug interaction studies—study design, data analysis, and implications for dosing and labeling (ed) (2006) UFCfDEaR [CDER]. RockvilleGoogle Scholar
  19. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63:548–561PubMedCrossRefGoogle Scholar
  20. Huang SM, Zhao H, Lee JI, Reynolds K, Zhang L et al (2010) Therapeutic protein-drug interactions and implications for drug development. Clin Pharmacol Ther 87:497–503PubMedCrossRefGoogle Scholar
  21. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:493–507PubMedCrossRefGoogle Scholar
  22. Kovarik JM, Pescovitz MD, Sollinger HW, Kaplan B, Legendre C et al (2001) Differential influence of azathioprine and mycophenolate mofetil on the disposition of basiliximab in renal transplant patients. Clin Transplant 15:123–130PubMedCrossRefGoogle Scholar
  23. Lachmann HJ, Lowe P, Felix SD, Rordorf C, Leslie K et al (2009) In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med 206:1029–1036PubMedCrossRefGoogle Scholar
  24. Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J et al (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66:7630–7638PubMedCrossRefGoogle Scholar
  25. Lee JI, Zhang L, Men AY, Kenna LA, Huang SM (2010) CYP-mediated therapeutic protein-drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet 49:295–310PubMedCrossRefGoogle Scholar
  26. Lindstrom ML, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687PubMedCrossRefGoogle Scholar
  27. Lowe PJ, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol 68:61–76PubMedCrossRefGoogle Scholar
  28. Lowe PJ, Tannenbaum S, Wu K, Lloyd P, Sims J (2010) On setting the first dose in man: quantitating biotherapeutic drug-target binding through pharmacokinetic and pharmacodynamic models. Basic Clin Pharmacol Toxicol 106:195–209PubMedCrossRefGoogle Scholar
  29. Lu JF, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J (2008) Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 62:779–786PubMedCrossRefGoogle Scholar
  30. Lunn DJ, Best N, Thomas A, Wakefield J, Spiegelhalter D (2002) Bayesian analysis of population PK/PD models: general concepts and software. J Pharmacokinet Pharmacodyn 29:271–307PubMedCrossRefGoogle Scholar
  31. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A et al (2009) Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol 49:1142–1156PubMedCrossRefGoogle Scholar
  32. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532PubMedCrossRefGoogle Scholar
  33. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72:1–10PubMedCrossRefGoogle Scholar
  34. Meno-Tetang GM, Lowe PJ (2005) On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach. Basic Clin Pharmacol Toxicol 96:182–192PubMedCrossRefGoogle Scholar
  35. Mentre F, Gomeni R (1995) A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. J Biopharm Stat 5:141–158PubMedCrossRefGoogle Scholar
  36. Mentre F, Kovarik J, Gerbeau C (1999) Constructing a prediction interval for time to reach a threshold concentration based on a population pharmacokinetic analysis: an application to basiliximab in renal transplantation. J Pharmacokinet Biopharm 27:213–230PubMedCrossRefGoogle Scholar
  37. Monolix Users Manual (2008) Orsay. Laboratorie de Mathematiques, U. Paris-Sue, FranceGoogle Scholar
  38. Mould DR, Baumann A, Kuhlmann J, Keating MJ, Weitman S et al (2007) Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol 64:278–291PubMedCrossRefGoogle Scholar
  39. Ng CM, Bruno R, Combs D, Davies B (2005a) Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol 45:792–801PubMedCrossRefGoogle Scholar
  40. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ (2005b) Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22:1088–1100PubMedCrossRefGoogle Scholar
  41. Ng CM, Bai S, Takimoto CH, Tang MT, Tolcher AW (2010) Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-alpha(5)beta (1) integrin monoclonal antibody (volociximab) in cancer patients. Cancer Chemother Pharmacol 65(2):207–217Google Scholar
  42. Pillai GC, Mentre F, Steimer JL (2005) Non-linear mixed effects modeling—from methodology and software development to driving implementation in drug development science. J Pharmacokinet Pharmacodyn 32:161–183PubMedCrossRefGoogle Scholar
  43. Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J Comput Graph Stat 4:12–35CrossRefGoogle Scholar
  44. SAS/STAT 9.2 User’s Guide: The NLMXED procedure (2008) SAS Insititute Inc., CaryGoogle Scholar
  45. Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res 5:411–459PubMedCrossRefGoogle Scholar
  46. Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5:445–479PubMedCrossRefGoogle Scholar
  47. Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8:553–571PubMedCrossRefGoogle Scholar
  48. Sheiner LB, Beal SL (1981) Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm 9:635–651PubMedCrossRefGoogle Scholar
  49. Sheiner LB, Beal SL (1982) Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci 71:1344–1348PubMedCrossRefGoogle Scholar
  50. Sheiner LB, Beal SL (1983) Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 11:303–319PubMedCrossRefGoogle Scholar
  51. Sheiner LB (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61:275–291PubMedCrossRefGoogle Scholar
  52. Slavin RG, Ferioli C, Tannenbaum SJ, Martin C, Blogg M, Lowe PJ (2009) Asthma symptom re-emergence after omalizumab withdrawal correlates well with increasing IgE and decreasing pharmacokinetic concentrations. J Allergy Clin Immunol 123(107–113):e103Google Scholar
  53. Steimer JL, Mallet A, Golmard JL, Boisvieux JF (1984) Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev 15:265–292PubMedCrossRefGoogle Scholar
  54. Tabrizi MA, Bornstein GG, Klakamp SL, Drake A, Knight R, Roskos L (2009) Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today 14:298–305PubMedCrossRefGoogle Scholar
  55. Vugmeyster Y, Tian X, Szklut P, Kasaian M, Xu X (2009) Pharmacokinetic and pharmacodynamic modeling of a humanized anti-IL-13 antibody in naive and Ascaris-challenged cynomolgus monkeys. Pharm Res 26:306–315PubMedCrossRefGoogle Scholar
  56. Wang DD, Zhang S, Zhao H, Men AY, Parivar K (2009) Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol 49:1012–1024PubMedCrossRefGoogle Scholar
  57. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558PubMedCrossRefGoogle Scholar
  58. Xiao JJ, Krzyzanski W, Wang YM, Li H, Rose MJ et al (2010) Pharmacokinetics of anti-hepcidin monoclonal antibody Ab 12B9 m and hepcidin in cynomolgus monkeys. AAPS J 12:646–657PubMedCrossRefGoogle Scholar
  59. Xu Z, Seitz K, Fasanmade A, Ford J, Williamson P et al (2008) Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol 48:681–695PubMedCrossRefGoogle Scholar
  60. Xu Z, Vu T, Lee H, Hu C, Ling J et al (2009) Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-alpha human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol 49:1056–1070PubMedCrossRefGoogle Scholar
  61. Zhang X, Achmitt S, Grange S (2009) Disease-drug interaction studies of tocilizumab with cytochrome P450 substrates in vitro and in vivo. Clin Pharmacol Ther 85:S59CrossRefGoogle Scholar
  62. Zhou H (2006) Population-based assessments of clinical drug–drug interactions: qualitative indices or quantitative measures? J Clin Pharmacol 46:1268–1289PubMedCrossRefGoogle Scholar
  63. Zhou H, Hu C, Zhu Y, Lu M, Liao S et al (2009) Population-based exposure-efficacy modeling of ustekinumab in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 50:257–267PubMedGoogle Scholar
  64. Zhu Y, Hu C, Lu M, Liao S, Marini JC et al (2009) Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 49:162–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.PK/PD and in vivo PharmacologyMerck Research Laboratory—Palo AltoPalo AltoUSA

Personalised recommendations