Application of Pharmacokinetic/Pharmacodynamic Modeling in the Development of Antibody-Based Therapeutics

  • Donald E. Mager


Mathematical modeling of the time-course of drug exposure (pharmacokinetics, PK) and associated pharmacological effects (pharmacodynamics, PD) has evolved from a simple descriptive endeavor to an essential component of model-based drug development. The role of PK/PD modeling can be more critical for antibody-based therapeutics owing to their complex pharmacological properties. Nonlinear behavior can manifest in most of the physiological processes controlling antibody PK, and mechanisms of drug response are inherently nonlinear and often involve turnover of endogenous ligands and biomarkers. In this chapter, model concepts and features that are common to antibody-based therapeutics are highlighted, along with applications of such models for understanding inter-species differences in concentration-effect relationships, selecting first-in-human doses, designing regimens for clinical studies, and linking PK/PD relationships to clinical outcomes. To improve prospective model predictions of drug efficacy and safety, new approaches will be needed to link antibody disposition with robust systems pharmacology models of drug and disease mechanisms.


PBPK Model Allometric Scaling Pharmacodynamic Model Dose Selection Indirect Response Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from NIH Grant GM57980, the Center for Protein Therapeutics, University at Buffalo, SUNY (UB), and the UB-Pfizer Strategic Alliance is gratefully appreciated. I thank Dr. Sihem Ait-Oudhia at UB for her assistance in constructing figures.


  1. Adolph EF (1949) Quantitative relations in the physiological constitutions of mammals. Science 109:579–585PubMedCrossRefGoogle Scholar
  2. Agoram BM, Martin SW, van der Graaf PH (2007) The role of mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modelling in translational research of biologics. Drug Discov Today 12(23–24):1018–1024PubMedCrossRefGoogle Scholar
  3. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR (1999) Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm 27(4):397–420PubMedCrossRefGoogle Scholar
  4. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK (1995) Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55(20):4611–4622PubMedGoogle Scholar
  5. Bellissant E, Sebille V, Paintaud G (1998) Methodological issues in pharmacokinetic–pharmacodynamic modelling. Clin Pharmacokinet 35(2):151–166PubMedCrossRefGoogle Scholar
  6. Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA et al (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther 333(1):2–13PubMedCrossRefGoogle Scholar
  7. Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M et al (2006) A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clinical Cancer Res 12(4):1221–1228CrossRefGoogle Scholar
  8. Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10(2):201–227PubMedCrossRefGoogle Scholar
  9. Brambell FW, Hemmings WA, Morris IG (1964) A theoretical model of gamma-globulin catabolism. Nature 203:1352–1354PubMedCrossRefGoogle Scholar
  10. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484PubMedGoogle Scholar
  11. Charman SA, Segrave AM, Edwards GA, Porter CJ (2000) Systemic availability and lymphatic transport of human growth hormone administered by subcutaneous injection. J Pharm Sci 89(2):168–177PubMedCrossRefGoogle Scholar
  12. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10(7):1093–1095PubMedCrossRefGoogle Scholar
  13. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478PubMedCrossRefGoogle Scholar
  14. Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1(5):435–461PubMedCrossRefGoogle Scholar
  15. Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu CP, Stouch BJ et al (2011) Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet 50(2):131–142PubMedCrossRefGoogle Scholar
  16. Ferl GZ, Wu AM, DiStefano JJ 3rd (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33(11):1640–1652PubMedCrossRefGoogle Scholar
  17. Ferraiolo BL, Mohler MA, Gloff CA (eds) (1992). Protein pharmacokinetics and metabolism, vol 1. Plenum Press, New YorkGoogle Scholar
  18. Friedrich SW, Lin SC, Stoll BR, Baxter LT, Munn LL, Jain RK (2002) Antibody-directed effector cell therapy of tumors: analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 4(5):449–463PubMedCrossRefGoogle Scholar
  19. Gabrielsson J, Weiner D (2000) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications, 3rd edn. Swedish Pharm Press, StockholmGoogle Scholar
  20. Galluppi GR, Rogge MC, Roskos LK, Lesko LJ, Green MD, Feigal DW Jr et al (2001) Integration of pharmacokinetic and pharmacodynamic studies in the discovery, development, and review of protein therapeutic agents: a conference report. Clin Pharmacol Ther 69(6):387–399PubMedCrossRefGoogle Scholar
  21. Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34(5):687–709PubMedCrossRefGoogle Scholar
  22. Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72(10):1103–1127PubMedCrossRefGoogle Scholar
  23. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26(3):690–696PubMedCrossRefGoogle Scholar
  24. Gibiansky L, Gibiansky E (2009) Target-mediated drug disposition model: relationships with indirect response models and application to population PK–PD analysis. J Pharmacokinet Pharmacodyn 36(4):341–351PubMedCrossRefGoogle Scholar
  25. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591PubMedCrossRefGoogle Scholar
  26. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63(5):548–561PubMedCrossRefGoogle Scholar
  27. Hu C, Xu Z, Rahman MU, Davis HM, Zhou H (2010) A latent variable approach for modeling categorical endpoints among patients with rheumatoid arthritis treated with golimumab plus methotrexate. J Pharmacokinet Pharmacodyn 37(4):309–321PubMedCrossRefGoogle Scholar
  28. Hutmacher MM, Krishnaswami S, Kowalski KG (2008) Exposure-response modeling using latent variables for the efficacy of a JAK3 inhibitor administered to rheumatoid arthritis patients. J Pharmacokinet Pharmacodyn 35(2):139–157PubMedCrossRefGoogle Scholar
  29. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE (1996) Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89(4):573–578PubMedCrossRefGoogle Scholar
  30. Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Nat Acad Sci U S A 93(11):5512–5516CrossRefGoogle Scholar
  31. Jusko WJ (2005) Guidelines for collection and analysis of pharmacokinetic data. In: Leslie M, Schentag JJ, Evans WE, Burton ME (eds) Applied pharmacokinetics & pharmacodynamics: principles of therapeutic drug monitoring, 3rd edn. Applied Therapeutics Inc. VancouverGoogle Scholar
  32. Kagan L, Gershkovich P, Mendelman A, Amsili S, Ezov N, Hoffman A (2007) The role of the lymphatic system in subcutaneous absorption of macromolecules in the rat model. Eur J Pharm Biopharm 67(3):759–765PubMedCrossRefGoogle Scholar
  33. Kagan L, Abraham AK, Harrold JM, Mager DE (2010) Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons. Pharm Res 27(5):920–932PubMedCrossRefGoogle Scholar
  34. Kereiakes DJ, Broderick TM, Roth EM, Whang D, Mueller M, Lacock P et al (2000) High platelet count in platelet-rich plasma reduces measured platelet inhibition by abciximab but not tirofiban nor eptifibatide glycoprotein IIb/IIIa receptor antagonists. J Thromb Thrombolysis 9(2):149–155PubMedCrossRefGoogle Scholar
  35. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA et al (2007) Model-based drug development. Clin Pharmacol Ther 82(1):21–32PubMedCrossRefGoogle Scholar
  36. Lee H, Kimko HC, Rogge M, Wang D, Nestorov I, Peck CC (2003) Population pharmacokinetic and pharmacodynamic modeling of etanercept using logistic regression analysis. Clin Pharmacol Ther 73(4):348–365PubMedCrossRefGoogle Scholar
  37. Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229(3):293–309PubMedCrossRefGoogle Scholar
  38. Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252PubMedCrossRefGoogle Scholar
  39. Ling J, Zhou H, Jiao Q, Davis HM (2009) Interspecies scaling of therapeutic monoclonal antibodies: initial look. J Clin Pharmacol 49(12):1382–1402PubMedCrossRefGoogle Scholar
  40. Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93(11):2645–2668PubMedCrossRefGoogle Scholar
  41. Lowe PJ, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol 68(1):61–76PubMedCrossRefGoogle Scholar
  42. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72(1):1–10PubMedCrossRefGoogle Scholar
  43. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532PubMedCrossRefGoogle Scholar
  44. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596PubMedCrossRefGoogle Scholar
  45. Mager DE, Mascelli MA, Kleiman NS, Fitzgerald DJ, Abernethy DR (2003a) Simultaneous modeling of abciximab plasma concentrations and ex vivo pharmacodynamics in patients undergoing coronary angioplasty. J Pharmacol Exp Ther 307(3):969–976PubMedCrossRefGoogle Scholar
  46. Mager DE, Wyska E, Jusko WJ (2003b) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31(5):510–518PubMedCrossRefGoogle Scholar
  47. Mahmood I (2004) Interspecies scaling of protein drugs: prediction of clearance from animals to humans. J Pharm Sci 93(1):177–185PubMedCrossRefGoogle Scholar
  48. Marathe A, Peterson MC, Mager DE (2008) Integrated cellular bone homeostasis model for denosumab pharmacodynamics in multiple myeloma patients. J Pharmacol Exp Ther 326(2):555–562PubMedCrossRefGoogle Scholar
  49. Meijer RT, Koopmans RP, ten Berge IJ, Schellekens PT (2002) Pharmacokinetics of murine anti-human CD3 antibodies in man are determined by the disappearance of target antigen. J Pharmacol Exp Ther 300(1):346–353PubMedCrossRefGoogle Scholar
  50. Meno-Tetang GM, Lowe PJ (2005) On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach. Basic Clin Pharmacol Toxicol 96(3):182–192PubMedCrossRefGoogle Scholar
  51. Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD (1991a) Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res 8(11):1351–1359PubMedCrossRefGoogle Scholar
  52. Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD (1991b) Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res 8(11):1351–1359PubMedCrossRefGoogle Scholar
  53. Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies—mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10(1):84–96PubMedGoogle Scholar
  54. Mould DR, Davis CB, Minthorn EA, Kwok DC, Elliott MJ, Luggen ME et al (1999) A population pharmacokinetic–pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther 66(3):246–257PubMedCrossRefGoogle Scholar
  55. Nestorov I (2003) Whole body pharmacokinetic models. Clin Pharmacokinet 42(10):883–908PubMedCrossRefGoogle Scholar
  56. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ (2005) Pharmacokinetic–pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22(7):1088–1100PubMedCrossRefGoogle Scholar
  57. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23(1):95–103PubMedCrossRefGoogle Scholar
  58. Powell JR, Gobburu JV (2007) Pharmacometrics at FDA: evolution and impact on decisions. Clin Pharmacol Ther 82(1):97–102PubMedCrossRefGoogle Scholar
  59. Proost JH, Beljaars L, Olinga P, Swart PJ, Kuipers ME, Reker-Smit C et al (2006) Prediction of the pharmacokinetics of succinylated human serum albumin in man from in vivo disposition data in animals and in vitro liver slice incubations. Eur J Pharm Sci 27(2–3):123–132PubMedCrossRefGoogle Scholar
  60. Putnam WS, Li J, Haggstrom J, Ng C, Kadkhodayan-Fischer S, Cheu M et al (2008) Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody. AAPS J 10(2):425–430PubMedCrossRefGoogle Scholar
  61. Roskos LK, Davis CG, Schwab GM (2004) The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev Res 61:108–120CrossRefGoogle Scholar
  62. Sheiner LB, Steimer JL (2000) Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol 40:67–95PubMedCrossRefGoogle Scholar
  63. Slavin RG, Ferioli C, Tannenbaum SJ, Martin C, Blogg M, Lowe PJ (2009) Asthma symptom re-emergence after omalizumab withdrawal correlates well with increasing IgE and decreasing pharmacokinetic concentrations. J Allergy Clin Immunol 123(1):107–113.e3PubMedCrossRefGoogle Scholar
  64. Sugiyama Y, Hanano M (1989) Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body. Pharm Res 6:192–202PubMedCrossRefGoogle Scholar
  65. Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7(2):167–169PubMedCrossRefGoogle Scholar
  66. Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11(1–2):81–88PubMedCrossRefGoogle Scholar
  67. Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99(3):1582–1600PubMedCrossRefGoogle Scholar
  68. Wagner JG (1968) Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 20(2):173–201PubMedCrossRefGoogle Scholar
  69. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84(5):548–558PubMedCrossRefGoogle Scholar
  70. West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208(Pt 9):1575–1592PubMedCrossRefGoogle Scholar
  71. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276(5309):122–126PubMedCrossRefGoogle Scholar
  72. Xu L, Eiseman JL, Egorin MJ, D’Argenio DZ (2003) Physiologically-based pharmacokinetics and molecular pharmacodynamics of 17-(allylamino)-17-demethoxygeldanamycin and its active metabolite in tumor-bearing mice. J Pharmacokinet Pharmacodyn 30(3):185–219PubMedCrossRefGoogle Scholar
  73. Yan X, Mager DE, Krzyzanski W (2010) Selection between Michaeli–Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn 37(1):25–47PubMedCrossRefGoogle Scholar
  74. Zia-Amirhosseini P, Minthorn E, Benincosa LJ, Hart TK, Hottenstein CS, Tobia LA et al (1999) Pharmacokinetics and pharmacodynamics of SB-240563, a humanized monoclonal antibody directed to human interleukin-5, in monkeys. J Pharmacol Exp Ther 291(3):1060–1067PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity at Buffalo, State University of New YorkBuffaloUSA

Personalised recommendations