Skip to main content

The Sorghum Genome Sequence: A Core Resource for Saccharinae Genomics

  • Chapter
  • First Online:
  • 1349 Accesses

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

As a taxon noted for large and complex polyploid genomes, a facile genomic model is of especially great importance to the Saccharinae. The genome of Sorghum bicolor (sorghum) offers numerous advantages as such a model, with a physical size (about 730 mbp) that is only moderately larger than that of rice, and enjoying the same low level of gene duplication as rice by virtue of a lack of genome duplication for 70 million years. Saccharinae, especially sugarcane, researchers have long exploited comparative genomics to leverage the small and well-mapped sorghum genome in the study and improvement of more complex genomes. The sequencing of the sorghum genome further enhances such leveraging opportunities, also providing insights into genes and genomic features that may contribute to distinguishing features of the Saccharinae. A host of postgenomic tools for sorghum, many described elsewhere in this volume, provide the foundation for use of sorghum as a Saccharinae functional genomics model. Here, we revisit the sequencing and initial analysis of the sorghum genome, providing more detail than could be included in the primary description of the genome and also highlighting planned efforts to increase knowledge of sequence diversity in the species and the genus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JE, Salzberg SL (2005) JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics 21:3596–3603

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A (2005) From sequences to knowledge, the role of the Swiss-Prot component of UniProt. Mol Cell Proteomics 4:S2–S2

    Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC, Exum HE, Goff VH, Herrick KL, Steele CLJ, Karunakaran S, Lafayette GK, Lemke C, Marler BS, Masters SL, McMillan JM, Nelson LK, Newsome GA, Nwakanma CC, Odeh RN, Phelps CA, Rarick EA, Rogers CJ, Ryan SP, Slaughter KA, Soderlund CA, Tang HB, Wing RA, Paterson AH (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci U S A 102:13206–13211

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  PubMed  CAS  Google Scholar 

  • Chen MS, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang FC, Kim H, Frisch D, Yu YS, Sun SH, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu JD, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo MZ, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  Google Scholar 

  • Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz PD, Town CD, Buell CR, Chan AP (2007) The TIGR plant transcript assemblies database. Nucleic Acids Res 35:D846–D851

    Article  PubMed  CAS  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed Rflp map of Sorghum-bicolor × S-propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Dewet JMJ, Gupta SC, Harlan JR, Grassl CO (1976) Cytogenetics of introgression from Saccharum into Sorghum. Crop Sci 16:568–572

    Article  Google Scholar 

  • Frederiksen RA, Miller FR (1972) Proposal for release and increase ATx622, BTx622, ATx623, BTx623, ATx624, BTx624. Seed Release Committee of the Texas Agricultural Experiment Station Texas A&M, College Station, TX

    Google Scholar 

  • Gardner RC, Howarth AJ, Hahn P, Brownluedi M, Shepherd RJ, Messing J (1981) The complete nucleotide-sequence of an infectious clone of cauliflower mosaic-virus by M13MP7 shotgun sequencing. Nucleic Acids Res 9:2871–2888

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Clark LG, Wendel JF, Muse SV (1997) Comparisons of the molecular evolutionary ­process at rbcL and ndhF in the grass family (Poaceae). Mol Biol Evol 14:769–777

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu YS, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gremme G, Brendel V, Sparks ME, Kurtz S (2005) Engineering a software tool for gene structure prediction in higher organisms. Inform Software Technol 47:965–978

    Article  Google Scholar 

  • Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 9:R7

    Article  PubMed  Google Scholar 

  • Harlan JR, Dewet JMJ (1975) Winge, O and Prayer, a—origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014

    Article  Google Scholar 

  • Initiative TIB (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Jaffe DB, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov JP, Zody MC, Lander ES (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13:91–96

    Article  PubMed  CAS  Google Scholar 

  • Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao ZR, Zhang XY, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Jia P, Wang X, Su N, Yu S, Zhang D, Ma L, Feng Q, Jin Z, Li L, Xue Y, Cheng Z, Zhao H, Han B, Deng XW (2005) A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. Plant Cell 17:1641–1657

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 4:656–664

    Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong JM, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Mewes HW, Amid C, Arnold R, Frishman D, Guldener U, Mannhaupt G, Munsterkotter M, Pagel P, Strack N, Stumpflen V, Warfsmann J, Ruepp A (2004) MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res 32:D41–D44

    Article  PubMed  CAS  Google Scholar 

  • Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839

    Article  CAS  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Muller HJ (1932) Some genetic aspects of sex. Am Nat 66:118–138

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004a) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004b) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants—molecular analysis of genes influencing dispersal and persistence of Johnsongrass, Sorghum halepense (L) Pers. Proc Natl Acad Sci U S A 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002a) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002b) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    Article  PubMed  CAS  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  PubMed  CAS  Google Scholar 

  • Searle SMJ, Gilbert J, Iyer V, Clamp M (2004) The Otter annotation system. Genome Res 14:963–970

    Article  PubMed  CAS  Google Scholar 

  • Sobral BWS, Braga DPV, Lahood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb subtribe of the Andropogoneae Dumort tribe. Theor Appl Genet 87:843–853

    Article  CAS  Google Scholar 

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  PubMed  CAS  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004a) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca M, Bennetzen JL, Messing J (2004b) On the tetraploid origin of the maize genome. Comp Funct Genomics 5:281–284

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H, Kubooka H, Matsuya A, Nakaoka H, Saichi N, Sanbonmatsu R, Sato Y, Shinso Y, Suzuki M, Takeda JI, Tanino M, Todokoro F, Yamaguchi K, Yamamoto N, Yamasaki C, Imanishi T, Okido T, Tada M, Ikeo K, Tateno Y, Gojobori T, Lin YC, Wei FJ, Hsing YI, Zhao Q, Han B, Kramer MR, McCombie RW, Lonsdale D, O’Donovan CC, Whitfield EJ, Apweiler R, Koyanagi KO, Khurana JP, Raghuvanshi S, Singh NK, Tyagi AK, Haberer G, Fujisawa M, Hosokawa S, Ito Y, Ikawa H, Shibata M, Yamamoto M, Bruskiewich RM, Hoen DR, Bureau TE, Namiki N, Ohyanagi H, Sakai Y, Nobushima S, Sakata K, Barrero RA, Sato Y, Souvorov A, Smith-White B, Tatusova T, An S, An G, Oota S, Fuks G, Messing J, Christie KR, Lieberherr D, Kim H, Zuccolo A, Wing RA, Nobuta K, Green PJ, Lu C, Meyers BC, Chaparro C, Piegu B, Panaud O, Echeverria M (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    PubMed  CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and colinearity in plant genomes. Science 320:486–488

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Sutton GG, Kerlavage AR, Smith HO, Hunkapiller M (1998) Shotgun sequencing of the human genome. Science 280:1540–1542

    Article  PubMed  CAS  Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci U S A 99:12959–12962

    Article  PubMed  CAS  Google Scholar 

  • Xu GW, Magill CW, Schertz KF, Hart GE (1994) A Rflp linkage map of Sorghum-Bicolor (L) Moench. Theor Appl Genet 89:139–145

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs W, Bi IV, Yamasaki M, Doebley J, McMullen M, Gaut B, Nielsen D, Holland J, Kresovich S, Buckler E (2005) A unified mixed-model method for association ­mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks numerous colleagues and collaborators for valuable discussions and innumerable contributions to aspects of 17 years of background work that led to sequencing of the sorghum genome, the Joint Genome Institute of the US Department of Energy for doing the vast majority of sequencing and contributing greatly to annotation and analysis, and a long list of coauthors of the primary sequence description (cited above) whose work is reviewed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paterson, A.H. (2013). The Sorghum Genome Sequence: A Core Resource for Saccharinae Genomics. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_5

Download citation

Publish with us

Policies and ethics