The Gene Pool of Miscanthus Species and Its Improvement

  • Erik J. Sacks
  • John A. Juvik
  • Qi Lin
  • J. Ryan Stewart
  • Toshihiko Yamada
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 11)

Abstract

For more than a thousand years, people have used Miscanthus from wild stands or managed landscapes, to feed their livestock, roof their homes, make paper, dye possessions, and beautify their gardens. In recent decades there has been a call to develop Miscanthus into a fully domesticated biomass crop for sustainable renewable energy needs. Miscanthus is broadly distributed throughout eastern Asia and the Pacific islands, ranging from southern Siberia to tropical Polynesia, with a current center of diversity in temperate northern latitudes. Adaptation to cold and temperate environments is a distinctive feature of Miscanthus relative to other Saccharinae, facilitating its potential to become an important biomass crop in Europe and the USA. Auto- and allopolyploidy have played a role in the evolution of Miscanthus and polyploidy will likely be of central importance for the development and improvement of this crop. Variation for flowering time, including short-day flower induction, will permit plant breeders to optimize local adaptation and biomass-yield of Miscanthus, just as they have done for maize, sorghum and sugarcane. Germplasm collections that are representative of the genus and publicly available need to be established and characterized. Questions of taxonomy, origins, and evolution need attention from the research community. A multidisciplinary approach that includes population genetics, cytogenetics, molecular genetics, and genomics will be needed to rapidly increase our knowledge of the Miscanthus gene pool, which will facilitate the development of improved cultivars.

Keywords

Miscanthus Saccharum Miscanes Taxonomy Centers of origin Ploidy Interspecific hybridization Traditional uses Breeding 

References

  1. Acquaah G (2007) Polyploidy in plant breeding. In: Chap 13, Principal of plant genetics and breeding. Blackwell Publishing, Malden, MA, pp 214–230Google Scholar
  2. Adati S (1958a) Cytogenetics of Japanese wild forage Miscanthus species. In: Proceedings of the X International Congress of Genetics, McGill University, Montreal, Canada, 20–27 AugustGoogle Scholar
  3. Adati S (1958b) Studies on the genus Miscanthus with special reference to the Japanese species for breeding purpose as fodder crops. Bull Fac Agric Mie Univ 12:1–112Google Scholar
  4. Adati S, Shiotani I (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ 25:1–24Google Scholar
  5. Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41Google Scholar
  6. AVRDC (2003) Program III. Collaboration in research and germplasm management. In: Kalb T (ed) AVRDC Report 2002, TaiwanGoogle Scholar
  7. Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the C-4 grass Miscanthus  ×  giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428Google Scholar
  8. Beale CV, Bint DA, Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus  ×  giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47:267–273Google Scholar
  9. Beale CV, Morison JI, Long SP (1999) Water use efficiencies of c4 perennial grasses in a temperate climate. Agric Forest Meteorol 96:103–115Google Scholar
  10. Burner DM (1997) Chromosome transmission and meiotic behavior in various sugarcane crosses. J Am Soc Sugar Cane Technol 17:38–50Google Scholar
  11. Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33:610–619Google Scholar
  12. Carputo D, Barone A (2005) Ploidy level manipulations in potato through sexual hybridization. Ann Appl Biol 146:71–79Google Scholar
  13. Chen YH (1993) Genetics and breeding studies on Saccharum-Miscanthus nobilization. Dissertation, National Taiwan UniversityGoogle Scholar
  14. Chen YH, Lo CC (1989) Disease resistance and sugar content in Saccharum-Miscanthus hybrids. Taiwan Sugar 36:9–12Google Scholar
  15. Chen SL, Renvoize SA (2005) A new species and a new combination of Miscanthus (Poaceae) from China. Kew Bull 60:605–607Google Scholar
  16. Chen YH, Chen C, Lo CC (2000) Extraordinary phenomenon of cell division in Saccharum Miscanthus and their nobilized progenies. Rep Taiwan Sugar Res Inst 170:27–44Google Scholar
  17. Chiang YC, Chou CH, Huang S, Chiang TY (2003a) Possible consequences of fungal contamination on the RAPD fingerprinting in Miscanthus (Poaceae). Aust J Bot 51:197–201Google Scholar
  18. Chiang YUC, Schaal BA, Chou CH, Huang S, Chiang TY (2003b) Contrasting selection modes at the ADH1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot 90:561–570PubMedGoogle Scholar
  19. Chou CH, Chiang YC, Chiang TY (2000) Genetic variability and phytogeography of Miscanthus sinensis var. condensatus an apomictic grass based on RAPD fingerprints. Can J Bot 78:1262–1268Google Scholar
  20. Chou CH, Chiang TY, Chiang YC (2001) Towards an integrative biology research: a case study on adaptive and evolutionary trends of Miscanthus populations in Taiwan. Weed Biol Manage 1:81–88Google Scholar
  21. Christian DG, Haase E (2001) Agronomy of miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 21–45Google Scholar
  22. Christophersen E (1935) Flowering plants of Samoa. Bernice P. Bishop Museum Bull 128, HonoluluGoogle Scholar
  23. Clayton WD, Harman KT, Williamson H (2010) GrassBase - the online world grass flora. http://www.kew.org/data/grasses-db.html
  24. Clifton-Brown JC, Jones MB (2001) Yield performance of M. ×giganteus during a 10 year field trial in Ireland. Aspects Appl Biol 65:153–160Google Scholar
  25. Clifton-Brown JC, Long SP, Jorgensen U (2001a) Miscanthus productivity. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 46–67Google Scholar
  26. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001b) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019Google Scholar
  27. Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518Google Scholar
  28. Clifton-Brown J, Chiang Y-C, Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294Google Scholar
  29. Darke R (1994) A century of grasses. Arnoldia 54:3–11Google Scholar
  30. Darke R (2007) The encyclopedia of grasses for livable landscapes. Timber, PortlandGoogle Scholar
  31. de Wet JMJ, Gupta SC, Harlan JR, Grassl CO (1976) Cytogenetics of introgression from Saccharum into Sorghum. Crop Sci 16:568–572Google Scholar
  32. Deuter M, Abraham J (1998) Genetic resources of Miscanthus and their use in breeding. In: Biomass for energy and industry proceedings of the international conference. 10th European conference and technology exhibition, Wurzburg, Germany, 8–11 June 1998Google Scholar
  33. Dohleman FG, Long SP (2009) More productive that maize in the midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115PubMedGoogle Scholar
  34. Engler D, Chen J (2009) Transformation and engineered trait modification in miscanthus species. World Intellectual Property OrganizationGoogle Scholar
  35. Florence J, Lorence DH (1997) Introduction to the flora and vegetation of the Marquesas Islands. Allertonia 7:226–237Google Scholar
  36. French BR (2006) Food composition tables for food plants in Papua New Guinea. TasmaniaGoogle Scholar
  37. Gartelmann S (2001) Where there’s a spark, there’s green tourism. The Japan Times Online URL. http://search.japantimes.co.jp/cgi-bin/fv20010321a1.html
  38. Glyn JL (2004) An introduction to sugarcane. In: Glyn J (ed) Sugarcane, 2nd edn. Blackwell, Ames, pp 1–19Google Scholar
  39. Gonzalez B, Hanna W (1984) Morphological and fertility responses in isogenic triploid and hexaploid pearl millet  ×  napiergrass hybrids. J Hered 75:317–318Google Scholar
  40. Grassl CO (1959) Introgression between Saccharum and Miscanthus in New Guinea and the Pacific area. In: Proceedings of the IX international botanical congress, Montreal, Canada, 19–29 AugustGoogle Scholar
  41. Grassl CO (1974) The origin of sugarcane. Sugarcane Breed Newsl 34:10–18Google Scholar
  42. Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus  ×  giganteus Greef et Deu. Angew Bot 67:87–90Google Scholar
  43. Greef JM, Deuter M, Jung C, Schondelmaier J (1997) Genetic diverstiy of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Plant Evolut 44:185–195Google Scholar
  44. Gupta SC, Harlan JR, de Wet MJ (1978) Cytology and morphology of a tetraploid zorghum population recovered from a Saccharum  ×  Sorghum hybrid. Crop Sci 18:879–883Google Scholar
  45. Haberle S (2007) Prehistoric human impact on rainforest biodiversity in highland New Guinea. Philos Trans R Soc B 362:219–228Google Scholar
  46. Hanna WW (1990) Transfer of germplasm from the secondary to the primary pool in Pennisetum. Theor Appl Genet 80:200–204Google Scholar
  47. Harlan JR (1992) Crops and Man. Am Soc Agron, Madison, WIGoogle Scholar
  48. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen temperature and water. Biomass Bioenergy 27:21–30Google Scholar
  49. Heaton E, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. SP Global Change Biol 14:1–15Google Scholar
  50. Hictchcock AS (1971) Manual of grasses of the United States, vol 2, 2nd edn. Dover, New YorkGoogle Scholar
  51. Himken M, Lammel J, Neukirchen D, Czypionka-Krause U, Olfs HW (1997) Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126Google Scholar
  52. Hirayoshi I, Nishikawa K, Kato R (1955) Cytogenetical studies on forage plants. (IV) Self-incompatibility in Miscanthus. Jpn J Breed 5:167–170Google Scholar
  53. Hirayoshi I, Nishikawa K, Kubono M, Murase T (1957) Cyto-genetical studies on forage plants (VI) On the chromosome number of Ogi (Miscanthus sacchariflorus). Res Bull Fac Agric Gifu Univ 8:8–13Google Scholar
  54. Hirayoshi I, Nishikawa K, Kubono M, Sakaida T (1959) Cyto-genetical studies on forage plants (VII) Chromosome conjugation and fertility of Miscanthus hybrids including M. sinensis M. sinensis var. condensatus and M. tinctorius. Res Bull Fac Agric Gifu Univ 11:86–91Google Scholar
  55. Hirayoshi I, Nishikawa K, Hakura A (1960) Cyto-genetical studies on forage plants (VIII) 3x- and 4x-hybrid arisen from the cross Miscanthus sinensis var. condensatus  ×  Miscanthus sacchariflorus. Res Bull Fac Agric Gifu Univ 12:82–88Google Scholar
  56. Hodkinson TR, Renvoize S (2001) Nomenclature of Miscanthus  ×  giganteus (Poaceae). Kew Bull 56:759–760Google Scholar
  57. Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002a) Phylogenetics of Miscanthus Saccharum and related genera (Saccharinae Andropogoneae Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392PubMedGoogle Scholar
  58. Hodkinson TR, Chase MW, Renvoize SA (2002b) Characterization of a genetic resource collection for Miscanthus (Saccharinae Andropogoneae Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636PubMedGoogle Scholar
  59. Hodkinson TR, Renvoize SA Chase MW (1997) Systematics of Miscanthus. Aspects of Applied Biology 49:189–198PubMedGoogle Scholar
  60. Holme IB, Petersen KK (1996) Callus induction and plant regeneration from different explant types of Miscanthus  ×  ogiformis Honda ‘Giganteus’. Plant Cell Tissue Organ Cult 45:43–52Google Scholar
  61. Holme IB, Petersen KK (1996) Callus induction and plant regeneration from different explant types of Miscanthus  ×  ogiformis Honda ‘Giganteus’. Plant Cell Tissue Organ Cult 45:43–52Google Scholar
  62. Holme IB, Krogstrup P, Hansen J (1997) Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus  ×  ogiformis Honda ‘Giganteus’ as affected by proline. Plant Cell Tissue Organ Cult 50:203–210Google Scholar
  63. Honda M (1939) Nuntia ad Floram Japoniae. XXXVIII. Bot Mag Tokyo 53:144Google Scholar
  64. Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li Z-K (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci U S A 100:4050–4054PubMedGoogle Scholar
  65. Ibaragi Y, Ohashi H (2004) A taxonomic study of Miscanthus section kariyasua (Graminae). J Jpn Bot 79:4–22Google Scholar
  66. Iketani Y, Ida H (2008) Flora of the grassland producing roof material in northern Nagano Prefecture, central Japan. Bull Inst Nat Educ Shiga Heights Shinshu Univ 45:1–6Google Scholar
  67. Inthakoun L, Delang CO (2008) Lao Flora A checklist of plants found in Lao PDR with scientific and vernacular names. Lulu, Morrisville, NCGoogle Scholar
  68. Iwanami Y (1969) Temperatures during Miscanthus type grassland fires and their effect on the regeneration of Miscanthus sinensis. Rep Inst Agric Res Tohoku Univ 20:47–88Google Scholar
  69. Jensen EF (2009) Flowering time diversity in Miscanthus: a tool for the optimisation of biomass. Comp Biochem Physiol A: Mol Integr Physiol 153(2 (Suppl 1)):S197Google Scholar
  70. Jorgensen U, Muhs H-J (2001) Miscanthus breeding and improvement. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 68–85Google Scholar
  71. Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200PubMedGoogle Scholar
  72. Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH (2012) SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor Appl Genet 124:1325–1338Google Scholar
  73. Kim HS, Zhang G, Juvik JA, Widholm JM (2010) Miscanthus × giganteus plant regeneration: Effect of callus types, ages and culture methods on regeneration competence. Global Change Biol Bioenergy 2:192–200Google Scholar
  74. Koyama T (1987) Grasses of Japan and its neighboring regions: an identification manual. Kodansha Ltd, TokyoGoogle Scholar
  75. Lafferty J, Lelley T (1994) Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed 113:246–249Google Scholar
  76. Lee YN (1964a) Taxonomic studies on the genus Miscanthus: relationships among the section subsection and species part 1. J Jpn Bot 39:196–205Google Scholar
  77. Lee YN (1964b) Taxonomic studies on the genus Miscanthus: relationships among the section subsection and species part 2 enumeration of species and varieties. J Jpn Bot 39:257–265Google Scholar
  78. Lee YN (1964c) Taxonomic studies on the genus Miscanthus: relationships among the section subsection and species part 3 enumeration of species and varieties. J Jpn Bot 39:289–298Google Scholar
  79. Lee YN (1993) Manual of the Korean grasses. Ewha Womans University Press, SeoulGoogle Scholar
  80. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227Google Scholar
  81. Li HW, Loh CS, Lee CL (1948) Cytological studies on sugarcane and its relatives I. Hybrids between Saccharum officinarum Miscanthus japonicus and Saccharum spontaneum. Bot Bull Acad Sin 2:147–160Google Scholar
  82. Li HW, Ma TH, Shang KC (1951) Cytological studies of sugarcane and its relatives IX. Further studies of hybrids of intergeneric and interspecific crosses. Rep Taiwan Sugar Exp Stat 7:1–24Google Scholar
  83. Li HW, Ma TH, Shang KC (1953) Cytological studies of sugarcane and its relatives X. Exclusive “patroclinous” type in the F1 of sugarcane variety and Miscanthus japonicus Anders. Rep Taiwan Sugar Exp Stat 10:1–6Google Scholar
  84. Li HW, Weng TH, Shang KC, Yang PC (1961) Cytological studies of sugarcane and its relatives: XVII. Trigeneric hybrids of Saccharum officinarum L. Sclerostachya fusca A. Camus and Miscanthus japonicus Anderss. Bot Bull Acad Sin 2:1–9Google Scholar
  85. Linde-Laursen IB (1993) Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecifichybrid. Hereditas 119:297–300Google Scholar
  86. Liu J, Yu X (2004) The exploitation and utilization of Triarrhena lutarioriparia resources. J Zhongkai Agrotechn Coll 7:63–67Google Scholar
  87. Lledó MD, Renvoize SA, Chase MW (2001) Miscanthus sinensis and Miscanthus sacchariflorus: a confusing pair of species. Aspects Appl Biol 65:249–254Google Scholar
  88. Loh CS, Wu TH (1949) A note on the trihybrids of (Saccharum officinarum  ×  S. robustum)  ×  Miscanthus japonica. Sugarcane Res Ann Prog Rep 3:377–386Google Scholar
  89. Luo YW, Yen XC, Zhang GY, Liang GH (1992) Agronomic traits and chromosome behavior of autotetraploid sorghums. Plant Breed 109:46–53Google Scholar
  90. Ma X-, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7:e33821Google Scholar
  91. Matumura M (1998a) Autecology of major forage grass (21): basic study for sustainable use. Anim Husbandry 52:717–725Google Scholar
  92. Matumura M (1998b) Autecology of major forage grass (20): basic study for sustainable use. Anim Husbandry 52:627–634Google Scholar
  93. Matumura M, Yukimura T (1975) Fundamental studies on artificial propagation by seeding useful wild grasses in Japan. VI. Germination behaviors of three native species of genus Miscanthus; M. sacchariflorus, M. sinensis, and M. tinctorius. Res Bull Fac Agric Gifu Univ 38:339–349Google Scholar
  94. Matumura M, Hasegawa T, Saijoh Y (1985) Ecological aspects of Miscanthus sinensis var. condensatus M. x sacchariflorus and their 3x–4x-hybrids (1) Process of vegetative spread. Res Bull Fac Agric Gifu Univ 50:423–433Google Scholar
  95. Matumura M, Hakumura Y, Saijoh Y (1986) Ecological aspects of Miscanthus sinensis var. condensatus M. × sacchariflorus and their 3x-4x-hybrids (2) Growth behaviour of the current year’s rhizomes. Res Bull Fac Agric Gifu Univ 51:347–362Google Scholar
  96. Matumura M, Hasegawa T, Saijoh Y (1987) Ecological aspects of Miscanthus sinensis var. condensatus M. x sacchariflorus and their 3x–4x-hybrids. (3) Aboveground standing crop and response to cutting. Res Bull Fac Agric Gifu Univ 52:315–324Google Scholar
  97. Maximowicz M (1859) Primitae Florae Amurensis. Mem Acad Imp Sci St Pitersb 9:331Google Scholar
  98. McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (eds) (2006) International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005, Regnum Vegetabile 146Google Scholar
  99. Miyabuchi Y, Sugiyama S (2006) A 30,000-year phytolith record of a tephra sequence, east of Aso Caldera, southwestern Japan. Quater Res 45:15–28Google Scholar
  100. Muntzing A (1951) Cytogenetic properties and practical value of tetraploid rye. Hereditas 37:17–84Google Scholar
  101. Naidu SL, Moose SP, AL-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697Google Scholar
  102. Newman M Ketphanh S Svengsuksa B Thoma P Sengdala K Lamxay V Armstrong K (2007) A Checklist of the vascular plants of Lao PDR. Royal Botanic Garden, Edinburgh, ScotlandGoogle Scholar
  103. Nielsen PN (1990) Elefantengrassanbau in Dänemark – Praktikerbericht. Pflug Spaten 3:1–4Google Scholar
  104. Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006) Induction of fertile amphidiploids by artificial chromosome-doubling in inter-specific hybrids between Dianthus caryophyllus L. and D. japonicus Thunb. Breed Sci 56:303–310Google Scholar
  105. Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Lane Rayburn A, Akashi R, Stewart RJ (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154–159Google Scholar
  106. Ogura J, Yamamoto S, Ikeka A (2002) The origin of the grassland of Aso region, Kyushu Japan, by microscopic charcoal analysis. Summaries Res AMS Nagoya Univ 13:236–240Google Scholar
  107. Paterson AH, Schertz KF, Lin YA, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L). Pers Proc Natl Acad Sci U S A 92:6127–6131Google Scholar
  108. Pyter R, Voigt T, Heaton E, Dohleman F, Long S (2007) Giant Miscanthus: biomass crop for Illinois. In: Janick J, Whipkey A (eds) Issues in new crops and new uses 2007. ASHS, Alexandria, VAGoogle Scholar
  109. Ramdoyal K, Badaloo GH (2002) Prebreeding in sugarcane with an emphasis on the programme of the Mauritius sugar industry research institute. In: Engles JMM, Rao VR, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. IPGRI, RomeGoogle Scholar
  110. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann Rev Ecol Syst 29:467–501Google Scholar
  111. Rayburn AL, Crawford J, Rayburn CM, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Rep 27:184–188Google Scholar
  112. Reeder J (1948) The Gramineae-Panicoideae of New Guinea. J Arnold Arbor 29:321–392Google Scholar
  113. Renvoize SA (2003) The genus Miscanthus. Plantsman 2:207–211Google Scholar
  114. Scally L, Wladren S, Hodkinson TR, Jones MB (2001) Morphological and molecular systematics of the genus Miscanthus. Aspects Appl Biol 65:231–237Google Scholar
  115. Scurlock JMO (1998) Miscanthus: a review of European experience with a novel energy crop. ORNL/TM-13732. Oak Ridge National Laboratory, Oak Ridge, TN, 26 ppGoogle Scholar
  116. Shouliang C, Renvoize SA (2006) Miscanthus. Flora Chin 22:581–583Google Scholar
  117. Stewart JR, Toma YO, Fernandez FG, Nishiwaki A, Yamada T, Bollero GN (2009) The ecology and agronomy of Miscanthus sinensis a species important to bioenergy crop development in its native range in Japan: a review. GCB Bioenergy 1:126–153Google Scholar
  118. Sun Q (2009) Primary taxonomic study of Miscanthus Andersson s.l. (Poaceae) from China and Japan. Dissertation Institute of Botany, the Chinese Academy of SciencesGoogle Scholar
  119. Sun Q, Lin Q, Yi ZL, Yang ZR, Zhou F (2010) A taxonomic revision of Miscanthus Andersson s.l. (Poaceae) from China. Bot J Linn Soc 164:178–220Google Scholar
  120. Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME (2010) Genomic and small RNA sequencing of Miscanthus  ×  giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11:R12PubMedGoogle Scholar
  121. Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP (2012) A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13:142–159PubMedGoogle Scholar
  122. Taliaferro CM, Vogel KP, Bouton JH, McLaughlin SB, Tuskan GA (1999) Reproductive characteristics and breeding improvement potential of switchgrass. In: Biomass, a growth opportunity in green energy and value-added products, proceedings of the 4th biomass conference of the Americas, 29 August to 2 SeptemberGoogle Scholar
  123. Thomas H (1993) Chromosome manipulation and polyploidy. In: Hayward M, Bosemark N, Romagosa I (eds) Plant breeding: principals and prospects. Chapman and Hall, London, pp 79–92Google Scholar
  124. Tu S, Luan L, Liu Y, Long W, Kong F, He T, Xu Q, Yan W, Yu M (2007) Production and heterosis analysis of rice autotetraploid hybrids. Crop Sci 47:2356–2363Google Scholar
  125. Ueda Y (1994) Systematic studies in the genus Rosa. Technol Bull Fac Hortic Chiba Univ Jpn 48:241–328Google Scholar
  126. Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus  ×  giganteus. Plant Physiol 148:557–567PubMedGoogle Scholar
  127. Wang X, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T (2011) Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3:322–332PubMedGoogle Scholar
  128. Watanabe H, Takahashi Y (2006) Dyeing golden by Miscanthus tinctorius. Bull Jpn Assoc Bot Gardens 40:81–87Google Scholar
  129. Xi Q (2000) Investigation on the distribution and potential of giant grasses in China – Triarrhena, Miscanthus, Arundo, Phragmites and Neyraudia. Cuvillier, GoettingenGoogle Scholar
  130. Xi Q (2003) Potential of Giant Grass Triarrhena lutarioriparia to grow in cold, dry and saline conditions as energy source. In: Proceedings of the International Conference on Bioenergy Utilization and Environment Protection - 6th LAMNET Project Workshop, 24–26 September, Dalian, ChinaGoogle Scholar
  131. Xiao FH, Tai PYP (1994) Antheral transformation into stigma in interspecific and intergeneric hybrids of Saccharum. J Am Soc Sugar Cane Technol 14:33–39Google Scholar
  132. Yi ZL, Zhou PH, Chu CC, Li X, Tian WZ, Wang L, Cao SY, Tang ZS (2001) Establishment of genetic transformation system for Miscanthus sacchariflorus and obtained of its transgenic plant. Gaojishu Tongxin/High Technology Letters 11(4):20Google Scholar
  133. Yoshida M, Liu Y, Uchida S et al (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810PubMedGoogle Scholar
  134. Yu CY, Kim HS, Rayburn AL, Widholm JM, Juvik JA (2009) Chromosome doubling of the bioenergy crop Miscanthus  ×  giganteus. GCB Bioenergy 1:404–412Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Erik J. Sacks
    • 1
  • John A. Juvik
    • 1
  • Qi Lin
    • 2
  • J. Ryan Stewart
    • 1
  • Toshihiko Yamada
    • 3
  1. 1.Department of Crop SciencesUniversity of Illinois, 1101 Institute for Genomic BiologyUrbanaUSA
  2. 2.Institute of BotanyChinese Academy of SciencesBeijingChina
  3. 3.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan

Personalised recommendations