Advertisement

The Gene Pool of Saccharum Species and Their Improvement

  • Andrew H. Paterson
  • Paul H. Moore
  • Tom L. Tew
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 11)

Abstract

Current taxonomy divides sugarcane into six species, two of which are wild and always recognized (Saccharum spontaneum L. and Saccharum robustum Brandes and Jewiet ex Grassl). The other species are cultivated and classified variously. Of the four domesticated species of Saccharum, S. officinarum L. was the first named and is the primary species for production of sugar. Recent genomic data for evaluating genetic diversity within Saccharum suggests relationships among accessions that may ultimately produce a definitive classification of the species. Sugarcane breeders have long realized that germplasm diversity is essential for sustained crop improvement, with accessions from at least 31 separate expeditions deposited in the two world collections as genetic reservoirs. Cultivated sugarcanes of today are complex interspecific hybrids primarily between Saccharum officinarum, known as the noble cane, and Saccharum spontaneum, with contributions from S. robustum, S. sinense, S. barberi, and related grass genera such as Miscanthus, Narenga, and Erianthus. Sugarcane has long been recognized as one of the world’s most efficient crops in converting solar energy into chemical energy harvestable as biomass, and is of growing interest as a biofactory for production of fossil fuel alternatives and other high-value bioproducts.

Keywords

Keywords Sugar cane Interspecific hybrid Polyploid Aneuploid Domestication Nobilization Energy cane Biofactory 

References

  1. Aitken KS, Li J, Wang L, Qing C, Fan YH, Jackson P (2006) Characterization of intergeneric hybrids of Erianthus rockii and Saccharum using molecular markers. Genet Resour Crop Evol 54:1395–1405CrossRefGoogle Scholar
  2. Alexander AG (1985) The energy cane alternative. Elsevier, AmsterdamGoogle Scholar
  3. Alix K, Baurens FC, Paulet JC, Glaszmann JC, D’Hont A (1998) Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome 41:854–864PubMedGoogle Scholar
  4. Alix K, Paulet JC, Glaszmann JC, D’Hont A (1999) Inter-Alu like species-specific sequences in the Saccharum complex. Theor Appl Genet 6:962–968CrossRefGoogle Scholar
  5. Amalraj VA, Balakrishnan R, Jebadhas AW, Balasundaram N (2006) Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures. Genet Resour Crop Evolut 53:1563–1572CrossRefGoogle Scholar
  6. Anonymous (1945) A newly released cane: some notes on NCo310. South Afr Sugar J 30:91Google Scholar
  7. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218 Artschwager E, Brandes EW (1958) Sugarcane (Saccharum officinarum L.). US, Department of AgricultureCrossRefGoogle Scholar
  8. Balakrishnan R, Nair NV, Sreenivasan TV (2000) A method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data. Genet Resour Crop Evolut 47:1–9CrossRefGoogle Scholar
  9. Barber CA (1920) The origin of the sugar cane International Sugar Journal 22:249–251CrossRefGoogle Scholar
  10. Bennett MD Leitch IJ (2003) Angiosperm DNA C-values Database (release 4.0, Jan 2003) http://wwwrbgkeworguk/cval/homepage.html
  11. Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210Google Scholar
  12. Blume H (1985) Geography of sugar cane: environmental, structural and economical aspects of cane sugar production. In: Blume H (ed) Geography of sugar cane. Verlag Dr. Albert Bartens, Berlin, pp 21–36Google Scholar
  13. Brandes EW (1956) Origin, dispersal and use in breeding of the Melanesian garden sugarcanes and their derivatives, Saccharum officinarum L. Proc Int Soc Sugar Cane Technol 9:709–750Google Scholar
  14. Brandes EW (1958) Origin, classification and characteristics. In: Artschwager E, Brandes EW (eds) Sugarcane (Saccharum officinarum L.). U.S. Department of Agriculture Handbook 122, Washington, DC, pp 1–35Google Scholar
  15. Bremer G (1923) A cytological investigation of some species and species-hybrids of the genus Saccharum. Genetica 5:273–326CrossRefGoogle Scholar
  16. Bremer G (1961) Problems in breeding and cytology of sugar cane. 4. Origin of increase of chromosome number in species hybrids of Saccharum. Euphytica 10(59–78):325–342CrossRefGoogle Scholar
  17. Brown JS, Schnell RJ, Power EJ, Douglas SL, Kuhn DN (2007) Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genet Resour Crop Evolut 54:627–648CrossRefGoogle Scholar
  18. Brown JS, Schnell RJ, Tai PYP, Miller JD (2002) Phenotypic evaluation of Saccharum barberi, S. robustum, and S. sinense Germplasm from the Miami, Fl, USA world collection. Sugar Cane Int Sept–Oct:3–16Google Scholar
  19. Bullard MJ, Heath MC, Nixon PM (1995) Shoot growth, radiation interception and dry matter production and partitioning during the establishment pase of Miscnthus sinensis “Giganteus” grown at two densities in the UK. Ann Appl Biol 126:94–102CrossRefGoogle Scholar
  20. Brumbley SM, Petrasovits L, Purnell M, O’Shea MG, Geijskes J, Lakshmanan P, Smith GR, Nielsen LK (2002) Application of biotechnology for future sugar industry diversification. Proc Aust Soc Sugar Cane Technol 24:40–46Google Scholar
  21. Burnquist WL, Sorrells ME, Tanksley S (1992) Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. Proc Int Soc Sugar Cane Technol 21:355–365Google Scholar
  22. Clayton WD (1972a) The awned genera of Andropogoneae. Studies in the Gramneae: 31. Kew Bull 27(3):457–454CrossRefGoogle Scholar
  23. Clayton WD (1972b) The awnless genera of Andropogoneae. Studies in the Gramneae: 33. Kew Bull 28(1):49–58CrossRefGoogle Scholar
  24. Clayton WD, Renvoize SA (1986) Genera Graminum—Grasses of the world. Kew Bull Additional Series 13:1–389Google Scholar
  25. Clifton-Brown JC, Lewandowski I (2000) Over-wintering problems of new established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294CrossRefGoogle Scholar
  26. Cuadrado A, Acevedo R, Dias M, de la Espina S, Jouve N, de la Torre C (2004) Genome ­remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854PubMedCrossRefGoogle Scholar
  27. D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109(1–3):27–33PubMedCrossRefGoogle Scholar
  28. D’Hont A, Grivet L, Feldmann P, Rao PS, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharun spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413PubMedGoogle Scholar
  29. D’Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugarcane revealed by heterologous probes. Sugar Cane 1:12–15Google Scholar
  30. D’Hont A, Paulet F, Glaszmann JC (2002) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262PubMedCrossRefGoogle Scholar
  31. D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterization of sugarcane intergeneric hybrids, Saccharum-officinarum x Erianthus-arundinaceus with molecular markers and DNA in-situ hybridization. Theor Appl Genet 91:320–326Google Scholar
  32. D’Hont A, Souza GM, Menossi M, Vincentz M, Van Sluys MA, Glaszmann JC, Ulian EC (2008) Sugarcane: a major source of sweetness, alcohol, and bio-energy. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 483–513CrossRefGoogle Scholar
  33. Daniels J, Daniels C (1975) Geographical, historical and cultural aspect of the origin of the Indian and Chinese sugarcanes S. barberi and S. sinense. Int Soc Sugar Cane Technol Sugarcane Breed Newsl 36:4–23Google Scholar
  34. Daniels J, Roach BT (1987) Taxonomy and evolution in sugarcane. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84Google Scholar
  35. Daniels J, Roach BT, Daniels C, Paton N (1991) The taxonomic status of Saccharum barberi Jesweit and S. sinense Roxb. Sugar Cane 3:11–16Google Scholar
  36. Daniels J, Smith P, Paton N, Williams C (1975) The origin of the genus Saccharum. Int Soc Sugar Cane Technol Sugarcane Breed Newsl 36:24–39Google Scholar
  37. Deerr N (1921) Cane sugar, 2nd edn. Norma Roger, LondonGoogle Scholar
  38. Deerr N (1949) The history of sugar, vol I. Chapman and Hall, LondonGoogle Scholar
  39. Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant. Cell Environ 32(11):1525–1537CrossRefGoogle Scholar
  40. Edgerton CW (1958) Sugarcane and its diseases. Louisiana State Univ. Press, Baton Rouge, pp 43–61Google Scholar
  41. Ethirajan AS (1987) Sugarcane hybridization techniques. In: Anonymous (eds) Copersucar International Sugarcane Breeding Workshop. Copersucar, Piracicaba, Brazil, pp 129–148Google Scholar
  42. Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273:4163–4170PubMedCrossRefGoogle Scholar
  43. Glaszmann JC, Lu YH, Lanaud C (1990) Variation of nuclear ribosomal DNA in sugarcane. J Genet Breed 44:191–198Google Scholar
  44. Gnanasambandam A, Birch RG (2004) Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis. Plant Cell Rep 24:435–447CrossRefGoogle Scholar
  45. Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6PubMedCrossRefGoogle Scholar
  46. Grivet L, Glaszmann JC, D’Hont A (2006) Molecular evidences for sugarcane evolution and domestication. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. New approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 49–66Google Scholar
  47. Grivet L, D’Hont A, Roques PD, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000PubMedGoogle Scholar
  48. Hamerli D, Birch R (2011) Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnol J 9(1):32–37PubMedCrossRefGoogle Scholar
  49. Heinz DJ, Osgood RV, Moore P (1994) Sugarcane. Encyclopedia of agricultural science, vol 4. Academic, San Diego, pp 225–238Google Scholar
  50. Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern cultivar (Saccharum spp.). I. Genome mapping with AFLP. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  51. Hodkinson TR, Chase MC, Lledó M, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392PubMedCrossRefGoogle Scholar
  52. Holland-Moritz P (2003) Sugar cane-derived therapeutic proteins avoid contamination issues. Drug Discov Dev 6:27Google Scholar
  53. Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194CrossRefGoogle Scholar
  54. Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999a) Linkage disequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060CrossRefGoogle Scholar
  55. Jannoo N, Grivet L, Seguin F, Paulet R, Domaingue PS, Rao A, Dookun A, D’Hont A, Glaszmann JC (1999b) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184CrossRefGoogle Scholar
  56. Jeswiet J (1927) World collection of Saccharum. Proc Int Soc Sugar Cane Technol 2:137–139Google Scholar
  57. Jeswiet J (1930) Proceedings of the International Society of sugar cane Technologists SoerabaiaGoogle Scholar
  58. Kennedy AJ, Rao PS (2000) Handbook 2000. West Indies Central Sugar Cane Breeding Station, St. George, Barbados, pp 1–10Google Scholar
  59. Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono H, de Souza CL Jr, de Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38PubMedCrossRefGoogle Scholar
  60. Lu YH, Dhont A, Paulet F, Grivet L, Arnaud M, Glaszmann JC (1994a) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78:7–8CrossRefGoogle Scholar
  61. Lu YH, Dhont A, Paulet F, Grivet L, Arnaud M, Glaszmann JC (1994b) Molecular diversity and genome structure in modern sugarcane cultivars. Euphytica 78:217–226CrossRefGoogle Scholar
  62. Machado GR, Da Silva WM, Irvine J (1987) Sugarcane breeding in Brazil: the Copersucar program. In: Anonomous (eds) Copersucar International Sugarcane Breeding Workshop. Copersucar, Brazil, pp 216–247Google Scholar
  63. McQualter RB, Fong Chong B, O’Shea MG, Meyer K, Van Dyk DE, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3(1):29–41PubMedCrossRefGoogle Scholar
  64. Mukherjee SK (1954) Revision of the genus Saccharum Linn. Bull Bot Soc Bengal 89:143–148Google Scholar
  65. Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–56CrossRefGoogle Scholar
  66. Nair NV, Nair S, Sreenivasan TV, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Res Crop Evolut 46:73–79CrossRefGoogle Scholar
  67. Nuss KJ, Brett PGC (1995) The release of cultivar NCo310 in 1945 and its impact on the sugar industry. Proc South Afr Sugar Technol Assoc 69:3–8Google Scholar
  68. Panje RR, Babu CN (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25:152–172CrossRefGoogle Scholar
  69. Parthasarathy N (1948) Origin of Noble Sugar-Canes (Saccharum officinarum). Nature 161:606–608 Paton N, Daniels J, Smith P (1978) A study of S. sinense Roxb. and S. barberi Jesw. Int Soc Sugarcane Technol Sugarcane Breed Newsl 41:33–50Google Scholar
  70. Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophyus H16. Characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297Google Scholar
  71. Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophyus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303PubMedGoogle Scholar
  72. Piperidis N, Chen J-W, Deng H-H, Wang LP, Jackson P, Piperidis G (2010a) GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome 53:331–336PubMedCrossRefGoogle Scholar
  73. Piperidis G, Christopher MJ, Carroll BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43:1033–1037PubMedGoogle Scholar
  74. Piperidis G, Piperidis N, D’Hont A (2010b) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics 284:65–73PubMedCrossRefGoogle Scholar
  75. Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227PubMedCrossRefGoogle Scholar
  76. Price S (1957) Cytological studies in Saccharum and allied genera II. Chromosome numbers in interspecific hybrids. Bot Gaz 118:146–159CrossRefGoogle Scholar
  77. Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17:97–105CrossRefGoogle Scholar
  78. Price S (1965) Interspecific hybridization in sugarcane breeding. Proc Int Soc Sugar Cane Technol 12:1021–1026Google Scholar
  79. Roach BT (1989) Origin and improvement of the genetic base of sugarcane. Proc Aust Soc Sugar Cane Technol 11:34–47Google Scholar
  80. Roach BT, Daniels J (1987) The Saccharum complex and the genus Saccharum. In: Anomous (eds) Copersucar Int. Sugarcane Breeding Workshop. Copersucar, Brazil, pp 1–33Google Scholar
  81. Rossi G, da Silva W, Irvine J (1987) Sugarcane breeding in Brazil: the Copersucar program. In: Anomous (eds.) Copersucar International Sugarcane Breeding Workshop. Copersucar, Brazil, pp 217–232Google Scholar
  82. Schubert P, Steinbuchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847PubMedGoogle Scholar
  83. Siebert M, Sommer S, Li S, Wang Z, Severin K, Heide L (1996) Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco. Plant Physiol 112:811–819PubMedCrossRefGoogle Scholar
  84. Simmonds NW (1976) Sugarcanes. In: Simmonds NW (ed) Evolution of crop plants. Longman Group Limited, London, pp 104–108Google Scholar
  85. Sobral BWS, Braga DPV, Lahood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. Subtribe of the Andropogoneae Dumort. Tribe. Theor Appl Genet 87:843–853CrossRefGoogle Scholar
  86. Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281CrossRefGoogle Scholar
  87. Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253Google Scholar
  88. Stevenson GC (1965) Genetics and breeding of sugar cane. Longman, LondonGoogle Scholar
  89. Tai PYP, Miller JD (2001) A core collection for Saccharum spontaneum L. from the World Collection of sugarcane. Crop Sci 41:879–885CrossRefGoogle Scholar
  90. Tai PYP, Miller JD (2002) Germplasm diversity among four sugarcane species for sugar composition. Crop Sci 42:958–964CrossRefGoogle Scholar
  91. Tew TL (1987) New varieties pp. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 559–594Google Scholar
  92. Tew TL (2003) World sugarcane variety census – Year 2000. Sugar Cane International March/April 2003:12–18Google Scholar
  93. Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer Science LLC, New YorkGoogle Scholar
  94. Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:1–14CrossRefGoogle Scholar
  95. Walker DIT (1987) Manipulating the genetic base of sugarcane. In: Anonymous (eds.) Copersucar International Sugarcane Breeding Workshop. Copersucar, Piracicaba, Brazil, pp 321–334Google Scholar
  96. Wang ML, Goldstein C, Su W, Moore PH, Albert H (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 114:167–178CrossRefGoogle Scholar
  97. Whalen MD (1991) Taxanomy of Saccharum (Poaceae). Baileya 23:109–125 Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Appl Environ Microbiol 71:1581–1590CrossRefGoogle Scholar
  98. Xavier RM (2007) The Brazilian ethanol experience. Competetive Enterprise Institute, Washington, DC http://www.cei.org/pdf/5774.pdf
  99. Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrew H. Paterson
    • 1
  • Paul H. Moore
    • 2
  • Tom L. Tew
    • 3
  1. 1.Plant Genome Mapping Laboratory, Departments of Crop and Soil Science, Plant Biology, and GeneticsUniversity of GeorgiaAthensUSA
  2. 2.Hawaii Agriculture Research CenterKuniaUSA
  3. 3.USDA, ARSHoumaUSA

Personalised recommendations