Skip to main content

Bridging Conventional and Molecular Genetics of Sorghum Insect Resistance

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Sustainable production of sorghum, Sorghum bicolor (L.) Moench, depends on effective control of insect pests as they continue to compete with humans for the sorghum crop. Insect pests are a major constraint in sorghum production, and nearly 150 insect species are serious pests of this crop worldwide and cause more than 9% loss annually. Annual losses due to insect pests in sorghum have been estimated to be $1,089 million in the semiarid tropics (ICRISAT Annual report 1991. International Crop Research Institute for Semi-arid Tropics. Patancheru, Andhra Pradesh, India, 1992), but differing in magnitude on a regional basis. Key insect pests in the USA include the greenbug, Schizaphis graminum (Rondani); sorghum midge, Stenodiplosis sorghicola (Coquillett); and various caterpillars in the Southern areas. For example, damage by greenbug to sorghum is estimated to cost US producers $248 million annually. The major insect pests of sorghum on a global basis are the greenbug, sorghum midge, sorghum shoot fly (Atherigona soccata Rond.), stem borers (Chilo partellus Swin. and Busseola fusca Fuller), and armyworms (Mythimna separata Walk and Spodoptera frugiperda J.E. Smith). Recent advances in sorghum genetics, genomics, and breeding have led to development of some cutting-edge molecular technologies that are complementary to genetic improvement of this crop for insect pest management. Genome sequencing and genome mapping have accelerated the pace of gene discovery in sorghum. Other genomic technologies, such as QTL (quantitative trait loci) mapping, gene expression profiling, functional genomics, and gene transfer are powerful tools for efficient identification of novel insect-resistance genes, and characterization of the key pathways that regulate the interactions between crop plants and insect pests leading to successful expression of the host plant defense. Traditional breeding methods, such as germplasm evaluation and enhancement, backcrossing, pedigree selection, and recurrent selection continue to play important roles in developing insect-resistant cultivars with major resistance genes; and new cultivars with enhanced resistance to several important insect pests are released continuously. Future research efforts should focus on identification of new sources of resistance, characterization of resistance genes, and dissecting the network of resistance gene regulation. Collaboration between research institutions and the sorghum industry as well as international cooperation in utilization of emerging knowledge and technologies will enhance the global efforts in insect pest management in sorghum.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of a product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aruna C, Bhagwat VR, Madhusudhana R, Sharma V, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N (2011) Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 122:1617–1630

    Article  PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart G (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    PubMed  CAS  Google Scholar 

  • Borad PK, Mittal VP (1983) Assessment of losses caused by pest complex to sorghum hybrid CSH 5. In: Krishnamurthy Rao BH, Murthy KSRK (eds) Crop losses due to insect pests. Entomological Society of India, Andhra Pradesh, India, pp 271–278

    Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin Y-R, Liu S-C, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang Y-W, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative, structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Burd JD, Porter DR (2006) Biotypic diversity in greenbug (Hemiptera, Aphididae), characterizing new virulence and host associations. J Econ Entomol 99:959–965

    Article  PubMed  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci (USA) 90:11212–11216

    Article  CAS  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Dar WD (2009) Winning the gamble against the monsoons. http://www.hindu.com/2009/07/05/stories/2009070555380900.htm

  • Deu M, Ratnadass MA, Hamada MA, Noyer JL, Diabate M, Chantereau J (2005) Quantitative trait loci for head-bug resistance in Sorghum. Afr J Biotechnol 4:247–250

    CAS  Google Scholar 

  • Dhillon MK, Sharma HC, Naresh JS, Ram S, Pampapathy G (2006a) Influence of cytoplasmic male-sterility on different mechanisms of resistance in sorghum to shoot fly Atherigona soccata. J Econ Entomol 99(4):1452–1461

    Article  PubMed  Google Scholar 

  • Dhillon MK, Sharma HC, Smith CM (2008) Implications of cytoplasmic male-sterility systems for development and deployment of pest resistant hybrids in cereals. CAB Rev Prospect Agric Vet Sci Nutrit Nat Res 3(068):1–16

    Google Scholar 

  • Dhillon MK (2004) Effects of cytoplasmic male-sterility on expression of resistance to sorghum shoot fly, Atherigona soccata (Rondani) (Muscidae, Diptera). PhD thesis. Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India, 382 pp

    Google Scholar 

  • Dhillon MK, Sharma HC, Reddy BVS, Ram S, Naresh JS, Kai Z (2005) Relative susceptibility of different male-sterile cytoplasms in sorghum to shoot fly, Atherigona soccata. Euphytica 144:275–283

    Article  Google Scholar 

  • Dhillon MK, Sharma HC, Ram S, Naresh JS (2006b) Influence of cytoplasmic male-sterility on expression of physico-chemical traits associated with resistance to sorghum shoot fly, Atherigona soccata. SABRAO J Breed Genet 38:105–122

    Google Scholar 

  • Dhillon MK, Sharma HC, Pampapathy G, Reddy BVS (2006c) Cytoplasmic male-sterility affects expression of resistance to shoot bug (Peregrinus maidis), sugarcane aphid (Melanaphis sacchari) and spotted stem borer (Chilo partellus). Intl Sorghum Millets Newslett 47:66–68

    Google Scholar 

  • Dhillon MK, Sharma HC, Reddy BVS, Ram S, Naresh JS (2006d) Nature of gene action for resistance to sorghum shoot fly, Atherigona soccata. Crop Sci 46:1377–1383

    Article  Google Scholar 

  • Dhillon MK, Sharma HC, Folkertsma RT, Chandra S (2006e) Genetic divergence and molecular characterization of shoot fly-resistant and -susceptible parents and their hybrids. Euphytica 149:199–210

    Article  CAS  Google Scholar 

  • Eddleman BR, Chang CC, McCarl BA (1999) Economic benefits from grain sorghum variety improvement in the United States. In: Wiseman BR, Webster JA (eds) Economic, environmental, and social benefits of resistance in field Crops. Entomological Society of America, Lanham, MD, pp 17–44

    Google Scholar 

  • Folkertsma RT, Sajjanar GM, Reddy BVS, Sharma HC, Hash CT (2003) Genetic mapping of QTL associated with sorghum shoot fly (Atherigona soccata) resistance in sorghum (Sorghum bicolor). In: Final abstracts guide, plant & animal genome XI, 11–15 Jan 2003. San Diego, CA, USA, p 42. http://www.intl-pag.org/11/abstracts/P5d_P462_XI.html

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599

    Article  PubMed  CAS  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Sivarama PL, Royer M, Secundo BS, Lakshmi N, Seetharama N (2005) Development of transgenic sorghum for insect resistance against spotted stem borer, (Chilo partellus). Transgen Res (in press)

    Google Scholar 

  • Harshavardhan D, Rani TS, Sharma HC, Arora R, Seetharama N (2002) Development and testing of Bt transgenic sorghum. In: International symposium on molecular approaches to improve crop productivity and quality, 22–24 May 2002, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

    Google Scholar 

  • Harvey TL, Hackerott HL (1969) Recognition of a greenbug biotype injurious to sorghum. J Econ Entomol 62:776–779

    Google Scholar 

  • Heller W, Forkman G (1993) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids, advances in research since 1986. Chapman and Hall, London

    Google Scholar 

  • Henzell RG, Brengman RL, Page FD (1980) Transference of sorghum midge resistance in to agronomically acceptable lines. In: Proc. 1st Australian Agronomy Conference. April 1980, Lawes, Queensland

    Chapter  Google Scholar 

  • Henzell RG, Jordan DR (2009) Grain sorghum breeding. In: Carena MJ (ed) Cereals. Springer Science, New York, pp 183–197

    Chapter  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  • Huang Y (2004) Examining plant defense responses to greenbug attack in sorghum using DNA microarray technology. Intl Sorghum Millets Newslett 44:72–74

    Google Scholar 

  • Huang Y (2006) Evaluating sorghum germplasm for resistance to greenbug (Schizaphis graminum) biotype I. Intl Sorghum Millets Newslett 47:72–74

    Google Scholar 

  • Huang Y (2007) Phloem feeding regulates the plant defense pathways responding to both aphid infestation and pathogen infection. In: Zhi-hong Xu et al (eds) Biotechnology and sustainable agriculture 2006 and beyond. Springer, New York, pp 215–219

    Chapter  Google Scholar 

  • Huang Y (2008) Development of EST-SSR markers for sorghum and their transferability among cereal species. In: Proc. Intl. Plant & Animal Genome Conference. 12–26 Jan 2008, San Diego, CA, pp 148

    Google Scholar 

  • Huang Y (2011) Improvement of crop protection against insect pest using worldwide germplasm collection and genomics-based approaches. Plant Genet Resour Charact Utiliz 9:317–320

    Article  CAS  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci (USA) 87:4251–4255

    Article  CAS  Google Scholar 

  • ICRISAT (1992) Annual report 1991. International Crop research Institute for Semi-arid Tropics. Patancheru, Andhra Pradesh, India

    Google Scholar 

  • ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) (1989) International workshop on sorghum stem borers, 17–20 Nov 1987, ICRISAT Center, Patancheru, Andhra Pradesh, India

    Google Scholar 

  • Johnson JW, Rosenow DT, Teetes GL (1973) Resistance to the sorghum midge in converted exotic sorghum cultivars. Crop Sci 13:754–755

    Article  Google Scholar 

  • Johnson JW (1977) Status of breeding for midge resistance. 10th biennial grain sorghum research and utilization conference, 2–4 Mar 1977, Grain Sorghum Producers Association, Wichita, KS

    Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Kimber CT, Dahlberg JA, Kresovich S (2012) The gene pool of Sorghum bicolor and its improvement. In: Paterson AH (ed) Genomics of the saccharinae. Springer, New York, pp 23–41

    Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps. Progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10:3659–3670

    CAS  Google Scholar 

  • Kumar H (1993) Responses of Chilo partellus (Lepidoptera, Pyralidae) and Busseola fusca (Lepidoptera, Noctuidae) to hybrids of a resistant and a susceptible maize. J Econ Entomol 86:962–968

    Google Scholar 

  • Kumar H, Mihm JA (1996) Resistance in maize hybrids and inbreds to first-generation southwestern corn borer, Diatraea grandiosella (Dyar) and sugarcane borer, Diatraea saccharalis Fabricius. Crop Prot 15:311–317

    Article  Google Scholar 

  • Kumari AP, Sharma HC, Reddy DDR (2000) Components of resistance to sorghum head bug, Calocoris angustatus. Crop Prot 19:385–392

    Article  Google Scholar 

  • Moran JL, Rooney WL (2003) Effect of cytoplasm on the agronomic performance of grain sorghum hybrids. Crop Sci 43:777–781

    Article  Google Scholar 

  • Mote UN (1984) Sorghum species resistant to shoot fly. Indian J Entomol 46:241–243

    Google Scholar 

  • Painter H (1951) Insect resistance in host plants. Macmillan, New York, p 520

    Google Scholar 

  • Park SJ, Huang Y, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    Article  PubMed  CAS  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus J (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243

    Article  PubMed  CAS  Google Scholar 

  • Peterson GC, Reddy BVS, Youm O, Teetes GL, Lambright L (1997). Breeding for resistance to foliar- and stem-feeding insects of sorghum and pearl millet. In: Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet. INTSORMIL, Publ. 97-5, pp 281–302

    Google Scholar 

  • Ramu P, Kassahun B, Senthilvel S, Ashok KC, Jayashree B, Folkertsma RT, Ananda Reddy L, Kuruvinashetti MS, Haussmann BIG, Hash CT (2009) Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Reddy BVS, Stenhouse JW (1994) Improving post-rainy season sorghum, a case study for landrace hybrid approach. An invited paper presented at All India co-ordinated sorghum improvement project (A ICSIP) workshop held at Pantnagar, UP, 18–20 April

    Google Scholar 

  • Rooney WL (2004) Sorghum improvement, integrating traditional and new technology to produce improved genotypes. Adv Agron 83:37–109

    Article  Google Scholar 

  • Ross WM, Kofoid KD (1979) Effect of non-milo cytoplasms on the agronomic performance of sorghum. Crop Sci 19:267–270

    Article  Google Scholar 

  • Sahrawat AK, Becker D, Lütticke S, Lörz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165:1147–1168

    Article  CAS  Google Scholar 

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119:1425–1439

    Article  PubMed  CAS  Google Scholar 

  • Seetharama N, Mythili PK, Rani TS, Harshavardhan D, Ranjani A, Sharma HC (2001) Tissue culture and alien gene transfer in sorghum. In: Singh RP, Jaiwal PK (eds) Improvement of food crops. Sci-Tech Publishing Company, Houstan, TX, pp 235–266

    Google Scholar 

  • Schertz KF (1994) Male-sterility in sorghum: its characteristics and importance. In: Witcombe JR, Duncan RR (eds) Use of molecular markers in sorghum and pearl millet breeding for developing countries. In: Proceedings of the international conference on genetic improvement of an overseas development administration (ODA) plant sciences research conference, 29 March–1 April 1993, Norwich, UK, ODA, UK, pp 35–37

    Google Scholar 

  • Sharma HC (1993) Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12:11–34

    Article  Google Scholar 

  • Sharma HC (2001) Cytoplasmic male-sterility and source of pollen influence the expression of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica 122:391–395

    Article  Google Scholar 

  • Sharma HC, Abraham CV, Vidyasagar P, Stenhouse JW (1996) Gene action for resistance in sorghum to midge, Contarinia sorghicola. Crop Sci 36:259–265

    Article  Google Scholar 

  • Sharma HC, Dhillon MK, Naresh JS, Ram S, Pampapathy G, Reddy BVS (2004) Influence of cytoplasmic male-sterility on the expression of resistance to insects in sorghum. In: Fisher T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Llyod D. (eds) Fourth international crop science congress, 25 September–October 1, 2004. Brisbane, Queensland, Australia 2007

    Google Scholar 

  • Sharma HC, Dhillon MK, Reddy BVS (2006) Expression of resistance to sorghum shoot fly in F1 hybrids involving shoot fly resistant and susceptible cytoplasmic male-sterile and restorer lines of sorghum. Plant Breed 125:473–477

    Article  CAS  Google Scholar 

  • Sharma HC, Franzmann BA (2001) Host plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. J Appl Entomol 125:109–114

    Article  Google Scholar 

  • Sharma HC, Nwanze KF (1997) Mechanisms of resistance to insects and their usefulness in sorghum improvement. Information bulletin no. 55. International Crop Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, 51 pp

    Google Scholar 

  • Sharma HC, Reddy BVS, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma RT, Hash CT, Sharma KK (2005) Host plant resistance to insects in sorghum, present status and need for future research. Intl Sorghum Millets Newslett 46:36–43

    Google Scholar 

  • Sharma HC, Taneja SL, Kameswara Rao N, Prasada Rao KE (2003) Evaluation of sorghum germplasm for resistance to insect pests. Information bulletin no. 63. Patancheru, Andhra Pradesh, India, International Crops Research Institute for the Semi-Arid Tropics (CRISAT). 184 pp

    Google Scholar 

  • Sharma HC, Taneja SL, Leuschner K, Nwanze KF (1992) Techniques to screen sorghums for resistance to insects. Information bulletin no. 32. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India, 48 pp

    Google Scholar 

  • Sharma HC, Vidyasagar P, Leuschner K (1988a) Field screening for resistance to sorghum midge (Diptera, Cecidomyiidae). J Econ Entomol 81:327–334

    Google Scholar 

  • Sharma HC, Vidyasagar P, Leuschner K (1988b) No-choice cage technique to screen for resistance to sorghum midge (Diptera, Cecidomyiidae). J Econ Entomol 81:415–422

    Google Scholar 

  • Sharma HC, Vidyasagar P, Abraham CV, Nwanze KF (1994) Effect of cytoplasmic male-sterility in sorghum on host plant interaction with sorghum midge, Contarinia sorghicola. Euphytica 74:35–39

    Article  Google Scholar 

  • Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, Jordan DR, Butler DG, McIntyre CL (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107:116–122

    PubMed  CAS  Google Scholar 

  • Tatum LA (1971) The southern corn leaf blight epidemic. Science 171:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Teetes GL, Pendleton BB (2000) Insect pests of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum, origin, history, technology, and production. Wiley, New York, pp 443–495

    Google Scholar 

  • Tejinder K, Howe A, Sato S, Dweikat I, Clemente T (2012) Sorghum transformation: overview and utility. In: Paterson AH (ed) Genomics of the saccharinae. Springer, New York, pp 205–221

    Google Scholar 

  • Tryon H (1895) The insect enemies of cereals belonging to the genus Cecidomyia. Trans Nat Hist Soc Queensland 1:80–83

    Google Scholar 

  • Uknes S, Dincher S, Friedrich L, Negrotto D, Williams S, Thompson-Taylor H, Potter S, Ward E, Ryals J (1993) Regulation of pathogenesis-related Protein-1a gene expression in tobacco. Plant Cell 5:159–169

    PubMed  CAS  Google Scholar 

  • van den Berg J, van Rensburg GDJ, van der Westhiizen MC (1994) Host-plant resistance and chemical control of Chilo partellus (Swinhoe) and Busseola fusca (Fuller) in an integrated pest management system on grain sorghum. Crop Prot 13:308–310

    Article  Google Scholar 

  • Venkateswaran K (2003) Diversity analysis and identification of sources of resistance to downy mildew, shoot fly and stem borer in wild sorghums. Ph.D. thesis. Hyderabad, Andhra Pradesh, India, Department of Genetics, Osmania University

    Google Scholar 

  • Venkateswaran K, Sharma HC, Manohar Rao D, Varaprasad KS, Bramel PJ (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed 128:137–142

    Article  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Aleander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    PubMed  CAS  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Ann Rev Genet 44:1–24

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Huang Y (2007) An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Genome 50:84–89

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Huang Y (2008) Molecular mapping of QTLs for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench). Theor Appl Genet 117:117–124

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Huang Y, Porter DR, Tauer CG, Hollaway L (2007) Identification of a major QTL conditioning resistance to greenbug biotype E in Sorghum PI 550610 using SSR markers. J Econ Entomol 100:1672–1678

    Article  PubMed  CAS  Google Scholar 

  • Xu D, McElroy D, Thoraburg RW, Wu R (1993) Systemic induction of a potato pin 2 promoter by wounding methyl jasmonate and abscisic acid in transgenic rice plants. Plant Mol Biol 22:573–588

    Article  PubMed  CAS  Google Scholar 

  • Yang W, de Oliveira AC, Godwin I, Schertz K, Bennetzen JL (1996) Comparison of DNA marker technologies in characterizing plant genome diversity, variability in Chinese sorghums. Crop Sci 36:1669–1676

    Article  Google Scholar 

  • Young WR, Teetes GL (1977) Sorghum entomology. Ann Rev Entomol 22:193–218

    Article  Google Scholar 

  • Zhuang X, Köllner TG, Zhao N, Li G, Jiang Y, Zhu L, Ma J, Degenhardt J, Chen F (2011) Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops. Plant J 69:70–80

    Article  PubMed  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn J-E, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Huang .

Editor information

Editors and Affiliations

Additional information

The US Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, Y., Sharma, H.C., Dhillon, M.K. (2013). Bridging Conventional and Molecular Genetics of Sorghum Insect Resistance. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_16

Download citation

Publish with us

Policies and ethics