Genetic Engineering of Miscanthus

Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 11)

Abstract

This chapter describes the advantages and present limitations of developing transgenic Miscanthus genotypes with improved characteristics for the emerging biomass and biofuels industries. An efficient method for transformation of Miscanthus developed in the laboratories of the authors is presented. Traits of value to the biomass/biofuels industry and strategies for how they could be improved by insertion of a transgene(s) are described, including herbicide resistance, biotic and abiotic stress resistance, and biomass composition improvements. In addition, we describe strategies for transgenically controlling traits leading to improvements in yield parameters such as plant height, tiller number, branching patterns, and time of flowering. Methods to integrate transgenic genotypes into a breeding program are discussed.

Keywords

Biomass Cellulose Cellulosic biofuels Flowering control Geneticin Lignin Miscanthus Giganteus Plant stress Transgenic 

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056PubMedGoogle Scholar
  2. Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72Google Scholar
  3. Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 277:189–198PubMedGoogle Scholar
  4. Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135PubMedGoogle Scholar
  5. Agindotan BO, Ahonsi MO, Domier LL, Gray ME, Bradley CA (2010) Application of sequence-independent amplification (SIA) for the identification of RNA viruses in bioenergy crops. J Virol Methods 169:119–128. doi: 10.1016/j.jviromet.2010.07.008 PubMedGoogle Scholar
  6. Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260PubMedGoogle Scholar
  7. Ali MB, Singh N, Shohael AM, Hahn EJ, Paek K-Y (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171:147–154Google Scholar
  8. Amaya I, Ratcliffe OJ, Bradley DJ (1999) Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11:1405–1417PubMedGoogle Scholar
  9. Amor Y, Haigler C, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357PubMedGoogle Scholar
  10. Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari E (2009) Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioener 33:635–643Google Scholar
  11. Archer T, Patrick C, Schuster G, Cronholm G, Bynum ED Jr, Morrison WP (2001) Ear and shank damage by corn borers and corn earworm to four events of Bacillus thuringiensis transgenic maize. Crop Prot 20:139–144Google Scholar
  12. Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997PubMedGoogle Scholar
  13. Aswath CR, Mo SY, Kim DH, Park SW (2006) Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Rep 25:92–99PubMedGoogle Scholar
  14. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor Appl Genet 107:123–129PubMedGoogle Scholar
  15. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2006) Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132:353–361Google Scholar
  16. Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333–346PubMedGoogle Scholar
  17. Baker JO, King MR, Adney WS, Decker SR, Vinzant TB, Lantz SE, Nieves RE, Thomas SR, Li LC, Cosgrove DJ, Himmel ME (2000) Investigation of the cell-wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:217–223PubMedGoogle Scholar
  18. Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:e106PubMedGoogle Scholar
  19. Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70Google Scholar
  20. Barrière Y, Méchin V, Lafarguette F, Manicacci D, Guillon F, Wang H, Lauressergues D, Pichon M, Bosio M, Tatout C (2009) Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production. Maydica 54:161–198Google Scholar
  21. Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96:103–115Google Scholar
  22. Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32PubMedGoogle Scholar
  23. Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159PubMedGoogle Scholar
  24. Bindschedler LV, Tuerck J, Maunders M, Ruel K, Petit-Conil M, Danoun S, Boudet AM, Joseleau JP, Bolwell GP (2007) Modification of hemicellulose content by antisense down-regulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 68:2635–2648PubMedGoogle Scholar
  25. Boe A, Beck DL (2008) Yield components of biomass in switchgrass. Crop Sci 48:1306–1311Google Scholar
  26. Boraston AB, Ghaffari M, Warren RAJ, Kilburn DG (2002) Identification and glucan-binding properties of a new carbohydrate-binding module family. Biochem J 361:35–40PubMedGoogle Scholar
  27. Borkhardt B, Harholt J, Ulvskov P, Ahring BK, Jørgensen B, Brinch-Pedersen H (2010) Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases. Plant Biotechnol 8:363–374Google Scholar
  28. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940PubMedGoogle Scholar
  29. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797PubMedGoogle Scholar
  30. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83PubMedGoogle Scholar
  31. Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295PubMedGoogle Scholar
  32. Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168PubMedGoogle Scholar
  33. Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637PubMedGoogle Scholar
  34. Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746PubMedGoogle Scholar
  35. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedGoogle Scholar
  36. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans. Science 311:1940–1942PubMedGoogle Scholar
  37. Casas AM, Kononowicz K, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216PubMedGoogle Scholar
  38. Castro BA, Leonard BR, Riley TJ (2004) Management of feeding damage and survival of southwestern corn borer and sugarcane borer (Lepidoptera: Crambidae) with Bacillus thuringiensis transgenic field corn. J Econ Entomol 97:2106–2116PubMedGoogle Scholar
  39. Catangui MA, Berg RK (2006) Western bean cutworm, Striacosta albicosta (Smith) (Lepidopteran: Noctuidae), as a potential pest of transgenic Cry1Ab Bacillus thuringiensis corn hybrids in South Dakota. Environ Entomol 35:1439–1452Google Scholar
  40. Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29PubMedGoogle Scholar
  41. CERA (2012) GM crop database. Center for Environmental Risk Assessment (CERA), ILSI Research Foundation, Washington D.C. http://cera-mc.org/index.php?action=gm_crop_database
  42. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185PubMedGoogle Scholar
  43. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761PubMedGoogle Scholar
  44. Chen YH, Lo CC (1989) Disease resistance and sugar content in SaccharumMiscanthus hybrids. Taiwan Sugar 36:912Google Scholar
  45. Chen T-S, Lam L, Chen S-C (1985) Somatic embryogenesis and plant regeneration from cultured young inflorescences of Oryza sativa L. (rice). Plant Cell Tissue Organ Culture 4:51–54Google Scholar
  46. Cherney JH, Axtell JD, Hassen MM, Anliker KS (1998) Forage quality characterization of a chemically-induced brown-midrib mutant in pearl-millet. Crop Sci 28:783–787Google Scholar
  47. Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619PubMedGoogle Scholar
  48. Christian DG, Lamptey JNL, Forde SMD, Plumb RT (1994) First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. Eur J Plant Pathol 100:167–170Google Scholar
  49. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus  ×  giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327Google Scholar
  50. Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294Google Scholar
  51. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Bonderup-Kjeldsen J, Jørgensen U, Mortensen V, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019Google Scholar
  52. Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007) A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proc Natl Acad Sci USA 104:8550–8555Google Scholar
  53. Colasanti J, Coneva V (2009) Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiol 149:56–62PubMedGoogle Scholar
  54. Colasanti J, Sundaresan V (2000) ‘Florigen’ enters the molecular age: long distance signals that cause plants to flower. Trends Biochem Sci 25:236–240PubMedGoogle Scholar
  55. Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603PubMedGoogle Scholar
  56. Coleman HD, Samuels AL, Guy R, Mansfield SD (2008) Perturbed lignification impacts tree growth in hybrid poplar—a function of sink strength, vascular integrity and photosynthetic assimilation. Plant Physiol 148:1229–1237PubMedGoogle Scholar
  57. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123PubMedGoogle Scholar
  58. Coleman HD, Beamish L, Reid A, Park JY, Mansfield SD (2010) Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Res 19:269–283PubMedGoogle Scholar
  59. Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–812PubMedGoogle Scholar
  60. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033PubMedGoogle Scholar
  61. Cosgrove DJ (2000) Loosening of plant cell walls by expansions. Nature 407:321–326PubMedGoogle Scholar
  62. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedGoogle Scholar
  63. Dai Z, Hooker B, Quesenberry R, Gao J (1999) Expression of Trichoderma reesei exocellobiohydrolase I in transgenic tobacco leaves and calli. Appl Biochem Biotechnol 79:689–699Google Scholar
  64. Dalchau N, Hubbard KE, Robertson FC, Hotta CT, Briggs HM, Stan GB, Goncalves JM, Webb AAR (2010) Correct biological timing in Arabidopsis requires multiple light-signaling pathways. Proc Natl Acad Sci USA 107:13171–13176PubMedGoogle Scholar
  65. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnology 20:581–586PubMedGoogle Scholar
  66. Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146:250–264PubMedGoogle Scholar
  67. Danilevskaya ON, Meng X, Ananiev EV (2010) Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize. Plant Physiol 153:238–251PubMedGoogle Scholar
  68. Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in Switchgrass. Crop Sci 44:443–448Google Scholar
  69. De Cesare M, Hodkinson TR, Barth S (2010) Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Mol Breed. doi: 10.1007/s11032-010-9451-z
  70. Desprez T, Vernhettes S, Fagard M, Refrégier G, Desnos T, Aletti E, Py N, Pelletier S, Höfte H (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128:482–490PubMedGoogle Scholar
  71. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577PubMedGoogle Scholar
  72. Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed betamannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366PubMedGoogle Scholar
  73. Dill GM, Cajacob CA, Padgette SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326–331PubMedGoogle Scholar
  74. Din N, Gilkes RN, Tekant B, Miller RC Jr, Warren RAJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Bio/Technology 9:1096–1099Google Scholar
  75. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-d-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci 106:5996–6001PubMedGoogle Scholar
  76. Doebley J, Stec A, Gustus C (1995) teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346PubMedGoogle Scholar
  77. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedGoogle Scholar
  78. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936PubMedGoogle Scholar
  79. Duan YX, Guo WW, Meng HJ, Tao NG, Li DD, Deng XX (2007) High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis. Biol Plant 51:212–216Google Scholar
  80. Ebringerová A, Heinze T (2000) Xylan and xylan derivatives – biopolymers with valuable properties. I. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556Google Scholar
  81. Eichenseer H, Strohbehn R, Burks J (2008) Frequency and severity of western bean cutworm (Lepidoptera: Noctuidae) ear damage in transgenic corn hybrids expressing different Bacillus thuringiensis cry toxins. J Econ Entomol 101:555–563PubMedGoogle Scholar
  82. Ellis RT, Stockhoff BA, Stamp L, Schnepf HE, Schwab GE, Knuth M, Russell J, Cardineau GA, Narva KE (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol 68:1137–1145PubMedGoogle Scholar
  83. Engler DE, Chen X (2009) Transformation and engineered trait modification in Miscanthus species. WO/2009/132116Google Scholar
  84. European Union (2012) Environmental releases of GMOs, European Union. http://mbg.jrc.ec.europa.eu/deliberate/dbplants.asp
  85. Ercoli L, Mariotti M, Mason A, Bonari E (1999) Effect of irrigation and nitrogen fertilization on biomass yield and effciency of energy use in crop production of Miscanthus. Field Crop Res 63:3–11Google Scholar
  86. Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305PubMedGoogle Scholar
  87. Fernandez MGS, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461Google Scholar
  88. Fincher GB (2009) Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol 149:27–37PubMedGoogle Scholar
  89. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688PubMedGoogle Scholar
  90. Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, Zhen S, Schnable PS, Wang K (2000) Production of transgenic maize from bombarded Type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29Google Scholar
  91. Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45PubMedGoogle Scholar
  92. Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51:294–301PubMedGoogle Scholar
  93. Fujioka S, Yamane H, Spray CR, Katsumit M, Phinney BO, Gaskin P, Macmillan J, Takahashiii N (1988) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85:9031–9035PubMedGoogle Scholar
  94. Gams W, Klamer M, O’Donnell K (1999) Fusarium miscanthi sp. nov. from Miscanthus litter. Mycology 91:263–268Google Scholar
  95. Gardiner JC, Taylor NG, Turner SR (2003) Control of cellulose synthase complex localization in developing xylem. Plant Cell 8:1740–1748Google Scholar
  96. Ghosh A, Ganapathi TR, Nath P, Bapat VA (2009) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tissue Organ Culture 97:131–139Google Scholar
  97. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800PubMedGoogle Scholar
  98. Glowacka K, Jezowski KZ (2010) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Culture 102:79–86Google Scholar
  99. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567PubMedGoogle Scholar
  100. Gonsalves D (1998) Resistance to papaya ringspot virus. Annu Rev Phytopathol 36:415–437PubMedGoogle Scholar
  101. Gossmann M (2000) Schadwirkung einer pilzparasitären Rhizombesiedlung und Maßnahmen zur Verbesserung der Austriebs-und Biomasseleistung bei Miscanthus  ×  giganteus Greef et Deu. In: Pude R (ed) Miscanthus-Vom Anbau bis zur Verwertung Miscanthus-symposium, Bonn, Beiträge Agrarwissenschaften, pp 26–31Google Scholar
  102. Gravois KA, Milligan SB, Martin FA (1991) Indirect selection for increased sucrose yield in early sugarcane testing stages. Field Crop Res 26:67–73Google Scholar
  103. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146PubMedGoogle Scholar
  104. Greenberg SM, Adamczyk JJ Jr (2007) Noctuid survivorship and damage in Widestrike, Bollgard, and Bollgard II cottons in the lower Rio Grande valley of Texas. In: Dugger P, Richter D (eds) Proceedings of the beltwide cotton conference, New Orleans, LA, 9–12 January 2007. National Cotton Council, Memphis, TN, pp 316–320Google Scholar
  105. Green JM, Hazel CB, Forney DR, Pugh LM (2008) New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Manag Scie 64:332–339Google Scholar
  106. Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172PubMedGoogle Scholar
  107. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831PubMedGoogle Scholar
  108. Guiderdoni E, Demarly Y (1988) Histology of somatic embryogenesis in cultured leaf segments of sugarcane plantlets. Plant Cell Tissue Organ Culture 14:71–88Google Scholar
  109. Gupta SC (1995) Inheritance and allelic study of brown midrib trait in pearl-millet. J Hered 86:301–303Google Scholar
  110. Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471PubMedGoogle Scholar
  111. Halbert SE, Remaudiere G (2000) A new oriental Melanaphis species recently introduced in North America [Hemiptera, Aphididae]. Rev Fr Entomol 22:109–117Google Scholar
  112. Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Foxon GA (1998) Maize brown-midrib (bm1) – a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553PubMedGoogle Scholar
  113. Haney LLH, Hake SSH, Scott MPS (2008) Allelism testing of Maize Coop Stock Center lines containing unknown brown midrib alleles. Maize Newsl 82:4–5Google Scholar
  114. Harris D, Stork J, Debolt S (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 1:51–61Google Scholar
  115. Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494–504PubMedGoogle Scholar
  116. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short day flowering in rice. Nature 422:719–722PubMedGoogle Scholar
  117. Hayashi T, Yoshida K, Park YW, Konishi T, Baba K (2005) Cellulose metabolism in plants. Int Rev Cytol 247:1–34PubMedGoogle Scholar
  118. Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340PubMedGoogle Scholar
  119. Heaton E, Voigt T, Long SP (2004a) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioener 27:21–30Google Scholar
  120. Heaton EA, Clifton-Brown J, Voigt TB, Jones MB, Long SP (2004b) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strat Global Chang 9:433–451Google Scholar
  121. Hellens R, Mullineaux P (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451PubMedGoogle Scholar
  122. Herbers K, Wilke I, Sonnewald U (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Biotechnology 13:63–66Google Scholar
  123. Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5:e10065PubMedGoogle Scholar
  124. Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313Google Scholar
  125. Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass Bioener 34:652–660Google Scholar
  126. Hoerlein G (1994) Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev Environ Contam Toxicol 138:73–145PubMedGoogle Scholar
  127. Holme IB, Petersen KK (1996) Callus induction and plant regeneration from different explant types of Miscanthus × ogiformis Honda ‘Giganteus’. Plant Cell Tissue Organ Culture 45:43–52Google Scholar
  128. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812PubMedGoogle Scholar
  129. Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush KS, Paterson AH, Li Z-K (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA 100:40504054Google Scholar
  130. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992PubMedGoogle Scholar
  131. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181PubMedGoogle Scholar
  132. Huggett DAJ, Leather SR, Walters KFA (1999) Suitability of the biomass crop Miscanthus sinensis as a host for the aphids Rhopalosiphum padi (L.) and Rhopalosiphum maidis (F.), and its susceptibility to the plant luteovirus barley yellow dwarf virus. Agric For Entomol 1:143–149Google Scholar
  133. Hung K-H, Chiang T-Y, Chiu C-T, Hsu T-W, Ho C-W (2009) Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis (Poaceae). Conserv Genet 10:1377–1380Google Scholar
  134. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H:F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183PubMedGoogle Scholar
  135. ISAAA (2010) ISAAA brief 41-2010: executive summary (2010) global status of commercialized biotech/GM crops: 2009 the first fourteen years, 1996 to 2009Google Scholar
  136. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153PubMedGoogle Scholar
  137. Itoh T, Kimura S (2001) Immunogold labeling of terminal cellulose synthesizing complexes. J Plant Res 114:483–489Google Scholar
  138. Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3b-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98:8909–8914PubMedGoogle Scholar
  139. Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120PubMedGoogle Scholar
  140. James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104PubMedGoogle Scholar
  141. Jang JY, Choi C, Hwang HDJ (2010) The WRKY superfamily of rice transcription factors. Plant Pathol J 26:110–114Google Scholar
  142. Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838PubMedGoogle Scholar
  143. Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528PubMedGoogle Scholar
  144. Jensen CS, Salchert K, Gao C, Andersen C, Didion T, Nielsen KN (2004) Floral inhibition in red fescue (Festuca rubra L.) through expression of a heterologous flowering repressor from Lolium. Mol Breed 13:37–48Google Scholar
  145. Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and glucuronidase as visual markers. Hereditas 137:20–28PubMedGoogle Scholar
  146. Jezowski S (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crop Prod 27:65–68Google Scholar
  147. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544PubMedGoogle Scholar
  148. Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369PubMedGoogle Scholar
  149. Jing S, Zhou X, Song Y, Yu D (2009) Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58:181–190Google Scholar
  150. Johansson H, Sterky F, Amini B, Lundeberg J, Kleczkowski LA (2002) Molecular cloning and characterization of a cDNA encoding poplar UDP-glucose dehydrogenase, a key gene of hemicellulose/pectin formation. Biochim Biophys Acta 1576:53–58PubMedGoogle Scholar
  151. Jorgenson LR (1931) Brown midrib in maize and its linkage relations. J Am Soc Agron 23:549–557Google Scholar
  152. Kardailsky K, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Maria J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965PubMedGoogle Scholar
  153. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350PubMedGoogle Scholar
  154. Kausch AP, Hague J, Oliver MJ, Yi L, Daniell H, Mascia P, Watrud LS, Stewart N (2010) Transgenic Biofuel Feedstocks and Strategies for Biocontainment. Biofuels 1:163–176PubMedGoogle Scholar
  155. Kavousi B, Daudi A, Cook CM, Joseleau JP, Ruel K, Devoto A, Bolwell GP, Blee KA (2010) Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymic saccharification. Phytochemistry 71:531–542PubMedGoogle Scholar
  156. Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell Tissue Organ Culture 101:323–330Google Scholar
  157. Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH (2012) SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. TAG 124:1325–1338PubMedGoogle Scholar
  158. Kimura S, Laosinchai W, Itoh T, Cui XJ, Linder CR, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085PubMedGoogle Scholar
  159. Kimura T, Mizutani T, Tanaka T, Koyama T, Sakka K, Ohmiya K (2003) Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl Microbiol Biotechnol 62:374–379PubMedGoogle Scholar
  160. Kimura T, Mizutani T, Sun JL, Kawazu T, Karita S, Sakka M, Kobayashi Y, Ohmiya K, Sakka K (2010) Stable production of thermotolerant xylanase B of Clostridium stercorarium in transgenic tobacco and rice. Biosci Biotechnol Biochem 74:954–960PubMedGoogle Scholar
  161. Kishore G, Shah D (1988) Amino acid biosynthesis inhibitors as herbicides. Annu Rev Biochem 57:627–663PubMedGoogle Scholar
  162. Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MM, Franks CD, Klein PE (2008) The effect of tropical Sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Plant Genome 48:S12–S26Google Scholar
  163. Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20:120–128PubMedGoogle Scholar
  164. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Takashi Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962PubMedGoogle Scholar
  165. Kojiama S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105PubMedGoogle Scholar
  166. Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 5:521–535Google Scholar
  167. Koornneef M, Alonso-Blanco C, Peeters AJ, Soppe W (1998) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345–370PubMedGoogle Scholar
  168. Korban SS, Gasic K, Li X (2006) Rose (Rosa hybrida L.). Meth Mol Biol 344:351–358Google Scholar
  169. Kozaki A, Hake S, Colasanti J (2004) The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 32:1710–1720PubMedGoogle Scholar
  170. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860PubMedGoogle Scholar
  171. Kuc J, Nelson OE (1964) The abnormal lignins produced by the brown-midrib mutants of maize. I. The brown-midrib-1 mutant. Arch Biochem Biophys 105:103–113PubMedGoogle Scholar
  172. Kumria R, Waie B, Rajam MV (2001) Plant regeneration from transformed embryogenic callus of an elite indica rice via Agrobacterium. Plant Cell Tissue Organ Culture 67:63–71Google Scholar
  173. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331PubMedGoogle Scholar
  174. Lagaert S, Beliën T, Volckaert G (2009) Plant cell walls: protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 20:1064–1073PubMedGoogle Scholar
  175. LaMondia JA (1996) Response of additional herbaceous perennial ornamentals to Meloidogyne hapla. J Nematol 28:636–638PubMedGoogle Scholar
  176. Lechtenberg VL, Muller LD, Bauman LF, Rhykerd CL, Barnes RF (1972) Laboratory and in vitro evaluation of inbred and F2 populations of brown midrib mutants of Zea mays L. Agron J 64:657–660Google Scholar
  177. Lee KY, Townsend J, Tepperman J, Black M, Chuil CF, Mazur B, Dunsmuir P, Bedbrook J (1988) The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO 7:1241–1248Google Scholar
  178. Lee C, O’Neill MA, Tsumuraya Y, Darvill AG, Ye ZH (2007) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48:1624–1634PubMedGoogle Scholar
  179. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009a) The F8H glycosyltransferase is a functional paralog of FRA8 involved in glucuronoxylan biosynthesis in Arabidopsis. Plant Cell Physiol 50:812–827PubMedGoogle Scholar
  180. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009b) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089PubMedGoogle Scholar
  181. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009c) The poplar GT8E and GT8F glycosyltransferases are functional orthologs of Arabidopsis PARVUS involved in glucuronoxylan biosynthesis. Plant Cell Physiol 50:1982–1987PubMedGoogle Scholar
  182. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2010) The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiol 153:526–541PubMedGoogle Scholar
  183. Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends in Biotech 24:109–114PubMedGoogle Scholar
  184. Legay S, Lacombe E, Goicoechea M, Brière C, Séguin A, Mackay J, Grima-Pettenati J (2007) Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci 173:542–549Google Scholar
  185. Lewis JM, Mackintosh CA, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer GJ (2008) Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep 27:1217–1225PubMedGoogle Scholar
  186. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621PubMedGoogle Scholar
  187. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331PubMedGoogle Scholar
  188. Li D, Wang L, Wang M, Xu YY, Luo W, Liu YJ, Xu ZH, Li J, Chong K (2009) Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J 7:791–806PubMedGoogle Scholar
  189. Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226PubMedGoogle Scholar
  190. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642PubMedGoogle Scholar
  191. Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411PubMedGoogle Scholar
  192. Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330PubMedGoogle Scholar
  193. Longo C, Lickwar C, Hu Q, Nelson-Vasilchik K, Viola D, Hague J, Chandlee JM, Luo H, Kausch AP (2006) Turf grasses. Methods Mol Biol 344:83–95PubMedGoogle Scholar
  194. Lopez-Perez AJ, Carreño J, Dabauza M (2009) Transformation of embryogenic callus and transgenic plant regeneration in table grapevine ‘sugraone’ (Vitis vinifera L.): effect of Agrobacterium tumefaciens strain. Acta Hort 827:415–420Google Scholar
  195. Lu C, Vasil IK, Ozias-Akins P (1982) Somatic embryogenesis in Zea mays L. Theor Appl Genet 62:109–112Google Scholar
  196. Lübberstedt Th, Melchinger AE, Schön CC, Utz HF, Klein D (1997) QTL mapping in testcrosses of European flint lines of maize: I. Comparison of different testers for forage yield traits. Crop Sci 37:921–931Google Scholar
  197. Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47:181–191PubMedGoogle Scholar
  198. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JM, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172PubMedGoogle Scholar
  199. Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Flavell R (2012) High Resolution Genetic Mapping by Genome Sequencing Reveals Genome PLoS ONE 7(3): e33821. doi:10.1371/journal.pone.0033821PubMedGoogle Scholar
  200. McCarthy RL, Zhong R, Ye ZH (2009) MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol 50:1950–1964PubMedGoogle Scholar
  201. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492PubMedGoogle Scholar
  202. Menden B, Kohlhoff M, Moerschbacher BM (2007) Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochem 68:513–520Google Scholar
  203. Merkele SA, Parrott W, Flin BS (1995) Morphogenic aspect of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 155–203Google Scholar
  204. Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95:6619–6623PubMedGoogle Scholar
  205. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956PubMedGoogle Scholar
  206. Miller JD, Tai PY, Edme SJ, Comstock JC, Glaz BS, Gilbert RA (2005) Basic germplasm utilization in the sugarcane development program at Canal Point, FL, USA. Int Soc Sugar Cane Technol Proc 2:532–536Google Scholar
  207. Miller TA, Muslin EH, Dorweiler JE (2008) A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227:1377–1388PubMedGoogle Scholar
  208. Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803PubMedGoogle Scholar
  209. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280PubMedGoogle Scholar
  210. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549PubMedGoogle Scholar
  211. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270PubMedGoogle Scholar
  212. Mullet JE, Rooney WL, Klein PE, Morishige D, Murphy R, Brady JA (2010) Discovery and utilization of sorghum genes (MA5/MA6). Patent Application Number: 20100024065Google Scholar
  213. Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193Google Scholar
  214. Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON (2006) Delayed flowering1 Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142:1523–1536PubMedGoogle Scholar
  215. Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750PubMedGoogle Scholar
  216. Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, Plainview, New YorkGoogle Scholar
  217. Nida DL, Kolacz KH, Buehler RE, Deaton WR, Schuler WR, Armstrong TA, Taylor ML, Ebert CC, Rogan GJ (1996) Glyphosate-tolerant cotton: genetic characterization and protein expression. J Agric Food Chem 44:1960–1966Google Scholar
  218. O’Neill NR, Farr DF (1996) Miscanthus blight; a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp. and its anamorphic state Stagonospora sp. Plant Dis 80:980–987Google Scholar
  219. Oomen RJFJ, Doeswijk-Voragen CHL, Bush MS, Vincken JP, Borkhardt B, Van de Broek LAM, Corsar J, Ulvskov P, Voragen AGJ, McCann MC, Visser RGF (2002) In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant J 30:403–413PubMedGoogle Scholar
  220. Padgette SR, Kolacz KH, Delannay X, Re DB, La Vallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461Google Scholar
  221. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655PubMedGoogle Scholar
  222. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Sci 312:1491–1495Google Scholar
  223. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046PubMedGoogle Scholar
  224. Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187PubMedGoogle Scholar
  225. Passas H, Poethig RS (1993) Vegetative and reproductive development in leafy1 and early flowering plants. MNL 67:91–92Google Scholar
  226. Patel M, Johnson J, Brettell R, Jacobsen J, Xue G (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–124Google Scholar
  227. Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of Johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA 92:6127–6131PubMedGoogle Scholar
  228. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Daniel S, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedGoogle Scholar
  229. Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003) Characterization of a pine MYB that regulates lignification. Plant J 36:743–754PubMedGoogle Scholar
  230. Pedersen JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819Google Scholar
  231. Peña MJ, Zhong R, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563PubMedGoogle Scholar
  232. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedGoogle Scholar
  233. Penning BW, Hunter CT III, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC (2009) Genetic resources for maize cell wall biology. Plant Physiol 151:1703–1728PubMedGoogle Scholar
  234. Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388Google Scholar
  235. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571PubMedGoogle Scholar
  236. Porter KS, Axtell JD, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208Google Scholar
  237. Pude R (2005) Bedeutung morphologischer, chemischer and physiologischer parameter sowie ihre interaktion zur beurteilung der baustofferzeugung unterschiedlicher Miscanthus-Herkuenfte. Beitraege zu Agrarwissenschaften 30, Publisher: Verlag P. Wehle, Hauptstrasse 144a, D-53474 Bad Neuenahr-Ahrweiler, ISBN 3-935307-30-6Google Scholar
  238. Pude R, Diepenbrock W, Franken H, Greef JM (1996) Impact and causes of winter kills of Miscanthus. Mitteil Gesell Pflanz (Germany) 9:61–62Google Scholar
  239. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052PubMedGoogle Scholar
  240. Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47Google Scholar
  241. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-­dependent signaling. Mol Plant Microbe Interact 20:492–499PubMedGoogle Scholar
  242. Quinby JR (1966) Fourth maturity locus in sorghum. Crop Sci 6:516–518Google Scholar
  243. Quinby JR (1974) Sorghum improvement and the genetics of growth. Texas A&M University Press, College Station, TXGoogle Scholar
  244. Quinby JR, Karper R (1945) The inheritance of three genes that influence time of floral initiation and maturity date in milo. J Am Soc Agron 37:916–936Google Scholar
  245. Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216Google Scholar
  246. Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M (2007) Heterologous Acidothermus cellulolyticus 1,4-beta-endoglucanase E1 produced within the corn biomass converts corn ­stover into glucose. Appl Biochem Biotechnol 137–140:207–219PubMedGoogle Scholar
  247. Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615PubMedGoogle Scholar
  248. Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120PubMedGoogle Scholar
  249. Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578PubMedGoogle Scholar
  250. Register JC, Nelson RS (1992) Early events in plant virus infections: relationships with genetically engineered protection and host gene resistance. Semin Virol 3:441–451Google Scholar
  251. Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498PubMedGoogle Scholar
  252. Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet  ×  grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384Google Scholar
  253. Robert S, Mouille G, Höfte H (2004) The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants. Cellulose 11:351–364Google Scholar
  254. Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400Google Scholar
  255. Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842Google Scholar
  256. Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fibre cell initiation, elongation, and seed development. Plant Cell 15:952–964PubMedGoogle Scholar
  257. Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1:193–204Google Scholar
  258. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381PubMedGoogle Scholar
  259. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702PubMedGoogle Scholar
  260. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898PubMedGoogle Scholar
  261. Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178:229–238Google Scholar
  262. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville CR (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084PubMedGoogle Scholar
  263. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289PubMedGoogle Scholar
  264. Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912PubMedGoogle Scholar
  265. Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273PubMedGoogle Scholar
  266. Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458PubMedGoogle Scholar
  267. Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 28(97):3753–3758Google Scholar
  268. Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ülker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science 315:1098–1103PubMedGoogle Scholar
  269. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedGoogle Scholar
  270. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Biol Rev 70:283–295Google Scholar
  271. Sibout R, Baucher M, Gatineau M, van Doorsselaere J, Mila I, Pollet B, Maba B, Pilate G, Lapierre C, Boerjan W, Jouanin L (2002) Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/ coniferaldehyde 5-hydroxylase increases S lignin deposition in Arabidopsis thaliana. Plant Physiol Biochem 40:1087–1096Google Scholar
  272. Siebert MW, Tindall KV, Leonard BR, van Duyn JW, Babcock JM (2008) Evaluation of corn hybrids expressing Cry1F (Herculex I insect protection) against fall armyworm (Lepidoptera: Noctuidae) in the southern United States. J Entomol Sci 43:41–51Google Scholar
  273. Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:1–8Google Scholar
  274. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78PubMedGoogle Scholar
  275. Song Y, You J, Xiong L (2009) Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol 70:297–309PubMedGoogle Scholar
  276. Songstad DD, Petersen WL, Armstrong CL (1992) Establishment of friable embryogenic (type II) callus from immature tassels of Zea mays (Poaceae). Am J Bot 79:761–764Google Scholar
  277. Soomro AF, Junejo S, Ahmed A, Aslam M (2006) Evaluation of different promising sugarcane varieties for some quantitative and qualitative attributes under thatta (Pakistan) conditions. Int J Agric Biol 8:195–197Google Scholar
  278. Sørensen SO, Pauly M, Bush MS, Skjot M, McCann MC, Borkhardt B, Ulvskov P (2000) Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-β-d-galactanase. Proc Natl Acad Sci USA 97:7639–7644Google Scholar
  279. Spencer JL, Raghu S (2009) Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus  ×  giganteus on a major pest of maize. PLoS One 4(12):e8336. doi: 10.1371 PubMedGoogle Scholar
  280. Sprague SJ, Marcroft SJ, Hayden HL, Howlett BJ (2006) Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia. Plant Dis 90:190–198Google Scholar
  281. Stewart SD, Adamczyk JJ Jr, Knighten KS, Davis FM (2001) Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival on noctuid (Lepidoptera) larvae. J Econ Entomol 94:752–760PubMedGoogle Scholar
  282. Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Phys 150:621–635Google Scholar
  283. Sun F, Zhang W, Xiong G, Yan M, Qian Q, Li J, Wang Y (2010) Identification and functional analysis of the MOC1 interacting protein 1. J Genet Genome 37:69–77Google Scholar
  284. Swaminathan K, Alabady MS, Varala K, de Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME (2010) Genomic and small RNA sequencing of Miscanthus  ×  giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11:R12PubMedGoogle Scholar
  285. Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167:201–208PubMedGoogle Scholar
  286. Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252PubMedGoogle Scholar
  287. Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–780PubMedGoogle Scholar
  288. Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2540PubMedGoogle Scholar
  289. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455PubMedGoogle Scholar
  290. Teakle NS, Shukla DD, Ford RE (1989) Sugarcane mosaic virus. AAB Descriptions of Plant Viruses, no. 342 (no. 88 revised)Google Scholar
  291. Tenhaken R, Thulke O (1996) Cloning of an enzyme that synthesizes a key nucleotide-sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase. Plant Physiol 112:1127–1134PubMedGoogle Scholar
  292. Thinggaard K (1997) Study of the role of Fusarium in the field establishment problem of Miscanthus. Acta Agric Scand B Plant Soil Sci 47:238–241Google Scholar
  293. Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-­element. New Phytol 187:57–66PubMedGoogle Scholar
  294. Tong JP, Liu XJ, Zhang SY, Li SQ, Peng XJ, Yang J, Zhu YG (2007) Identification, genetic characterization, GA response and molecular mapping of Sdt97: a dominant mutant gene conferring semi-dwarfism in rice (Oryza sativa L.). Genet Res 89:221–230PubMedGoogle Scholar
  295. Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488Google Scholar
  296. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594PubMedGoogle Scholar
  297. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701PubMedGoogle Scholar
  298. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellins. Plant Cell 19:2140–2155PubMedGoogle Scholar
  299. Uelker B, Mukhtar SM, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signalling pathways. Planta 226:125–137Google Scholar
  300. USDA-APHIS (2012) Status of permits, notifications, and petitions. United States Department of Agriculture, Animal and Plant Health Inspection Service. http://www.aphis.usda.gov/biotechnology/status.shtml
  301. Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416PubMedGoogle Scholar
  302. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307Google Scholar
  303. Wang ZY, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18Google Scholar
  304. Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129PubMedGoogle Scholar
  305. Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239PubMedGoogle Scholar
  306. Wang ZZ, Zhang SZ, Yang BP, Li YR (2005) Trehalose synthase gene transfer mediated by Agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech 7:49–54Google Scholar
  307. Wang H, Hao J, Chen X, Hao Z, Wang X, Lou U, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815PubMedGoogle Scholar
  308. Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K (2008a) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One 3:e3521PubMedGoogle Scholar
  309. Wang D, Portis AR Jr, Moose SP, Long SP (2008b) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus  ×  giganteu. Plant Physiol 148:557–567PubMedGoogle Scholar
  310. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008c) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602PubMedGoogle Scholar
  311. Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758PubMedGoogle Scholar
  312. Welter ME, Clayton DS, Miller MA, Petolino JF (1995) Morphotypes of friable embryogenic maize callus. Plant Cell Rep 14:725–729Google Scholar
  313. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059PubMedGoogle Scholar
  314. Wilczek AM, Roe JL, Knapp MC, Cooper MD, Lopez-Gallego C, Martin LJ, Muir CD, Sim S, Walker A, Anderson J, Egan F, Moyers BT, Petipas R, Giakountis A, Charbit E, Coupland G, Welch SM, Schmitt J (2009) Effects of genetic perturbation on seasonal life history plasticity. Science 323:930–934PubMedGoogle Scholar
  315. Willrich MM, Braxton LB, Richburg JS, Lassiter RB, Langston VB, Haygood RA, Richardson JM, Hails FJ, Huckaba RM, Pellow JW, Thompson GD, Mueller JP (2005) Field and laboratory performance of WideStrike insect protection against secondary lepidopteran pests. In: Proceedings of the 2005 beltwide cotton conference, New Orleans, LA, 4–7 January 2005, pp 1262–1268Google Scholar
  316. Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11:165–185Google Scholar
  317. Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21PubMedGoogle Scholar
  318. Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA 105:12915–12920PubMedGoogle Scholar
  319. Wu AM, Hörnblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153:542–554PubMedGoogle Scholar
  320. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157PubMedGoogle Scholar
  321. Xi Y, Ge Y, Wang ZY (2009) Genetic transformation of switchgrass. Methods Mol Biol 581:53–59PubMedGoogle Scholar
  322. Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142:280–293PubMedGoogle Scholar
  323. Xin Z, Wang M, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2:10–16Google Scholar
  324. Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732PubMedGoogle Scholar
  325. Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P, Shi W, Doeppke C, Sykes RW, Burris JN, Bozell JJ, Cheng MZ, Hayes DG, Labbe N, Davis M, Stewart CN Jr, Yuan JS (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(Suppl 11):S3PubMedGoogle Scholar
  326. Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664PubMedGoogle Scholar
  327. Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC, Nishikubo N, Kubo M, Katayama Y, Kakegawa K, Dupree P, Demura T (2010) Vascular-related NAC-DOMAIN6 and vascular-related NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol 153:906–914PubMedGoogle Scholar
  328. Yamashita S, Nonaka N, Namba S, Doi Y, Yora K (1985) Miscanthus streak virus, a geminivirus in Miscanthus sacchariflorus Benth. et Hook. Annu Phytopathol Soc Jpn 51:582–590Google Scholar
  329. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268PubMedGoogle Scholar
  330. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedGoogle Scholar
  331. Yang A, He C, Zhang K, Zhang J (2006) Improvement of Agrobacterium-mediated transformation of embryogenic calluses from maize elite inbred lines. In Vitro Cell Dev Biol Plant 42:215–219Google Scholar
  332. Yang P, Wang Y, Bai Y, Meng K, Luo H, Yuan T, Fan Y, Yao B (2007) Expression of xylanase with high specific activity from Streptomyces olivaceoviridis A1 in transgenic potato plants (Solanum tuberosum L.). Biotechnol Lett 29:659–667PubMedGoogle Scholar
  333. Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153PubMedGoogle Scholar
  334. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2002) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484Google Scholar
  335. Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312PubMedGoogle Scholar
  336. Yin Y, Huang J, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and Algae. BMC Plant Biol 9:99PubMedGoogle Scholar
  337. Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572PubMedGoogle Scholar
  338. Zhong R, Ye ZH (2010) The poplar PtrWNDs are transcriptional activators of secondary cell wall biosynthesis. Plant Signal Behav 5:469–472PubMedGoogle Scholar
  339. Zhong R, Peña MJ, Zhou GK, Nairn CJ, Wood-Jones A, Richardson EA, Morrison WH, Darvill AG, York WS, Ye ZH (2005) Arabidopsis Fragile Fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390–3408PubMedGoogle Scholar
  340. Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170PubMedGoogle Scholar
  341. Zhong R, Richardson EA, Ye ZH (2007a) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792PubMedGoogle Scholar
  342. Zhong R, Richardson EA, Ye ZH (2007b) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611PubMedGoogle Scholar
  343. Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782PubMedGoogle Scholar
  344. Zhong R, Lee C, Ye ZH (2010) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152:1044–1055PubMedGoogle Scholar
  345. Zhou CB, Chen AF (1985) Observation on the bionomics and hibernation of Sesamia inferens (Walker) in the northern part of Hainan Island. Insect Knowledge 22:199–201Google Scholar
  346. Zhou GK, Zhong R, Richardson EA, Morrison WH, Nairn CJ, Wood-Jones A, Ye Z-H (2006) The poplar glycosyltransferase GT47C is functionally conserved with Arabidopsis Fragile Fiber8. Plant Cell Physiol 47:1229–1240PubMedGoogle Scholar
  347. Zhou GK, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye Z-H (2007) Molecular characterization of PoGT8D and PoGT43B, two secondary wall-associated glycosyltransferases in poplar. Plant Cell Physiol 48:689–699PubMedGoogle Scholar
  348. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266PubMedGoogle Scholar
  349. Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261PubMedGoogle Scholar
  350. Ziegelhoffer T, Will J, Austin-Phillips S (1999) Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Mol Breed 5:309–318Google Scholar
  351. Zili Y, Puhua Z, Chengcai C, Xiang L, Wenzhong T, Li W, Shouyun C, Zuoshun T (2004) Establishment of genetic transformation system for Miscanthus sacchariflorus and obtaining of its transgenic plants. High Technol Lett 10:27–31Google Scholar
  352. Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX (2007) Overexpression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene 391:80–90PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mendel Biotechnology, IncHaywardUSA

Personalised recommendations