Lung protective ventilation strategies, which include low tidal volumes (approximately 6 ml/kg), high PEEP (>10 cm H2O or 1–2 cm H2O above the lower inflection point on the pressure–volume loop), and a plateau airway pressure of approximately 28–30 cm H2O, are currently accepted as the standard of care for ventilating patients with ALI/ARDS.1


Permeability Surfactant Albumin Lactate Corticosteroid 


  1. 1.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308.Google Scholar
  2. 2.
    Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet. 1967;1:319–323.CrossRefGoogle Scholar
  3. 3.
    Bernard GR, Artigas A, Brigham KL. The American–European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824.PubMedGoogle Scholar
  4. 4.
    Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–1349.PubMedCrossRefGoogle Scholar
  5. 5.
    Leaver SK, Evans TW. Acute respiratory distress syndrome. BMJ. 2007;335:389–394.PubMedCrossRefGoogle Scholar
  6. 6.
    Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31:776–784.PubMedCrossRefGoogle Scholar
  7. 7.
    Dreyfuss D, Basset G, Soler P, et al. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132:880–884.PubMedGoogle Scholar
  8. 8.
    Malhotra A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N Engl J Med. 2007;357:1113–1120.PubMedCrossRefGoogle Scholar
  9. 9.
    Amato MB, Barbash CS, Medeiros DM, et al. Beneficial effects of the “Open lung approach” with low distending pressures in acute respiratory distress syndrome: a prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med. 1995;152:1835–1846.PubMedGoogle Scholar
  10. 10.
    Hager DN, Krishnan JA, Hayden DL, et al. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–1245.PubMedCrossRefGoogle Scholar
  11. 11.
    Stapleton RD, Wang BM, Hudson LD, et al. Causes and timing of death in patients with ARDS. Chest. 2005;128:525–532.PubMedCrossRefGoogle Scholar
  12. 12.
    Adhikari NK, Burns KE, Friedrich JO, et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334:779.PubMedCrossRefGoogle Scholar
  13. 13.
    Girard TD, Bernard GR. Mechanical ventilation in ARDS: a state-of-the-art review. Chest. 2007;131:921–929.PubMedCrossRefGoogle Scholar
  14. 14.
    Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553–1565.PubMedCrossRefGoogle Scholar
  15. 15.
    Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33:S228–S240.PubMedCrossRefGoogle Scholar
  16. 16.
    Habashi N, Andrews P. Ventilator strategies for posttraumatic acute respiratory distress syndrome: airway pressure release ventilation and the role of spontaneous breathing in critically ill patients. Curr Opin Crit Care. 2004;10:549–557.PubMedCrossRefGoogle Scholar
  17. 17.
    Dart BW, Maxwell RA, Richart CM, et al. Preliminary experience with airway pressure release ventilation in a trauma/surgical intensive care unit. J Trauma. 2005;59:71–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Laffey JG, Honan D, Hopkins N, et al. Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med. 2004;169:46–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang Z, Su F, Bruhn A, et al. Acute hypercapnia improves indices of tissue oxygenation more than dobutamine in septic shock. Am J Respir Crit Care Med. 2008;177:178–183.PubMedCrossRefGoogle Scholar
  20. 20.
    Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–645.PubMedCrossRefGoogle Scholar
  21. 21.
    Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–336.PubMedCrossRefGoogle Scholar
  22. 22.
    Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory setting in adults with acute lung injury and acute respiratory distress syndrome. A randomized controlled trial. JAMA. 2008;299:646–655.PubMedCrossRefGoogle Scholar
  23. 23.
    Phoenix SI, Paravastu S, Columb M, et al. Does a higher positive end expiratory pressure decrease mortality in acute respiratory distress syndrome? A systematic review and meta-analysis. Anesthesiology. 2009;110:1098–1105.PubMedCrossRefGoogle Scholar
  24. 24.
    Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–2104.PubMedCrossRefGoogle Scholar
  25. 25.
    Fan E, Wilcox ME, Brower RG, et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178:1156–1163.PubMedCrossRefGoogle Scholar
  26. 26.
    Sud S, Sud M, Friedrich JO, et al. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ. 2008;178:1153–1161.PubMedCrossRefGoogle Scholar
  27. 27.
    Peek GJ, Clemens F, Elbourne D, et al. CESAR: conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health Serv Res. 2006;6:163.PubMedCrossRefGoogle Scholar
  28. 28.
    Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–2575.Google Scholar
  29. 29.
    Martin GS, Moss M, Wheeler AP, et al. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33:1681–1687.PubMedCrossRefGoogle Scholar
  30. 30.
    Meduri GU, Marik PE, Annane D. Prolonged glucocorticoid treatment in acute respiratory distress syndrome: evidence supporting effectiveness and safety. Crit Care Med. 2009;37:1800–1803.PubMedCrossRefGoogle Scholar
  31. 31.
    Tang BM, Craig JC, Eslick GD, et al. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Crit Care Med. 2009;37:1595–1603.Google Scholar
  32. 32.
    Meduri GU, Marik PE, Chrousos GP, et al. Steroid treatment in ARDS: a critical appraisal of the ARDS network trial and the recent literature. Intensive Care Med. 2008;34:61–69.PubMedCrossRefGoogle Scholar
  33. 33.
    Peter JV, John P, Graham PL, et al. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008;336:1006–1009.PubMedCrossRefGoogle Scholar
  34. 34.
    Meduri GU, Golden E, Freire AX, et al. Methylprednisolone infusion in patients with early severe ARDS: results of a randomized trial. Chest. 2007;131:954–963.PubMedCrossRefGoogle Scholar
  35. 35.
    Marik PE, Zaloga GP. Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med. 2008;34:1980–1990.PubMedCrossRefGoogle Scholar
  36. 36.
    Pontes-Arruda A, DeMichele S, Srth A, et al. The use of an inflammation modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a Meta-analysis evaluation of outcome data. JPEN. 2008;32(6):596–605.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care MedicineEastern Virginia Medical SchoolNorfolkUSA

Personalised recommendations