Advertisement

Ventilator-Associated Pneumonia

  • Paul Ellis Marik
Chapter

Abstract

Ventilator-associated pneumonia (VAP) is defined as a pneumonia which develops after 48 h of mechanical ventilation. VAP is the commonest nosocomial infection in the ICU and an important cause of morbidity. While the incidence varies according to the diagnostic criteria used and the patient population, it complicates the hospital course of about 20% of patients receiving mechanical ventilation or about five episodes per 1,000 ventilator days.1 VAP increases the number of days requiring mechanical ventilation as well as ICU and hospital length of stay; however, it is unclear if VAP independently increases mortality.

Keywords

Lower Respiratory Tract Tracheal Aspirate Quantitative Culture Clinical Pulmonary Infection Score Unplanned Extubation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Safdar N, Dezfulian C, Collard HR, et al. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med. 2005;33:2184–2193.PubMedCrossRefGoogle Scholar
  2. 2.
    Feldman C, Kassel M, Cantrell J, et al. The presence and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation. Eur Respir J. 1999;13:546–551.PubMedCrossRefGoogle Scholar
  3. 3.
    Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165:867–903.PubMedGoogle Scholar
  4. 4.
    Dobbins BM, Kite P, Wilcox MH. Diagnosis of central venous catheter related sepsis – a critical look inside. J Clin Pathol. 1999;52:165–172.PubMedCrossRefGoogle Scholar
  5. 5.
    Bahrani-Mougeot FK, Paster BJ, Coleman S, et al. Molecular analysis of oral and respiratory bacterial species associated with ventilator-associated pneumonia. J Clin Microbiol. 2007;45:1588–1593.PubMedCrossRefGoogle Scholar
  6. 6.
    el-Ebiary M, Torres A, Fabregas N, et al. Significance of the isolation of Candida species from respiratory samples in critically ill, non-neutropenic patients. An immediate postmortem histologic study. Am J Respir Crit Care Med. 1997;156:583–590.PubMedGoogle Scholar
  7. 7.
    Delisle MS, Williamson DR, Perreault MM, et al. The clinical significance of Candida colonization of respiratory tract secretions in critically ill patients. J Crit Care. 2008;23:11–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Trouillet JL, Chastre J, Vuagnat A, et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med. 1998;157:531–539.PubMedGoogle Scholar
  9. 9.
    Rello J, Jubert P, Valles J, et al. Evaluation of outcome for intubated patients with pneumonia due to Pseudomonas aeruginosa. Clin Infect Dis. 1996;23:973–78.PubMedCrossRefGoogle Scholar
  10. 10.
    Rello J, Torres A, Ricart M, et al. Ventilator-associated pneumonia by Staphylococcus aureus. Comparison of methicillin-resistant and methicillin-sensitive episodes. Am J Respir Crit Care Med. 1994;150:1545–1549.PubMedGoogle Scholar
  11. 11.
    Niederman MS, Craven DE, Bonten MJ, et al. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRefGoogle Scholar
  12. 12.
    Mandelli M, Mosconi P, Langer M, et al. Is pneumonia developing in patients in intensive care always a typical “nosocomial” infection? Lancet. 1986;2:1094–1095.PubMedCrossRefGoogle Scholar
  13. 13.
    Giard M, Lepape A, Allaouchiche B, et al. Early- and late-onset ventilator-associated pneumonia acquired in the intensive care unit: comparison of risk factors. J Crit Care. 2008;23:27–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Mabie M, Wunderink RG. Use and limitations of clinical and radiologic diagnosis of pneumonia. Semin Resp Infect. 2003;18:72–79.Google Scholar
  15. 15.
    Lauzier F, Ruest A, Cook D, et al. The value of pretest probability and modified clinical pulmonary infection score to diagnose ventilator-associated pneumonia. J Crit Care. 2008;23:50–57.PubMedCrossRefGoogle Scholar
  16. 16.
    Fabregas N, Ewig S, Torres A, et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax. 1999;54:867–873.PubMedCrossRefGoogle Scholar
  17. 17.
    Pugin J, Auckenthaler R, Mili N, et al. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis. 1991;143:1121–1129.PubMedGoogle Scholar
  18. 18.
    Schurink CA, Van Nieuwenhoven CA, Jacobs JA, et al. Clinical pulmonary infection score for ventilator-associated pneumonia: accuracy and inter-observer variability. Intensive Care Med. 2004;30:217–224.PubMedCrossRefGoogle Scholar
  19. 19.
    Croce MA, Swanson JM, Magnotti LJ, et al. The futility of the clinical pulmonary infection score in trauma patients. J Trauma. 2006;60:523–527.PubMedCrossRefGoogle Scholar
  20. 20.
    Pham TN, Neff MJ, Simmons JM, et al. The clinical pulmonary infection score poorly predicts pneumonia in patients with burns. J Burn Care Res. 2007;28:76–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Johanson WG Jr., Seidenfeld JJ, Gomez P, et al. Bacteriologic diagnosis of nosocomial pneumonia following prolonged mechanical ventilation. Am Rev Respir Dis. 1988;137:259–264.PubMedGoogle Scholar
  22. 22.
    Chastre J, Fagon JY, Bornet-Lecso M, et al. Evaluation of bronchoscopic techniques for the diagnosis of nosocomial pneumonia. Am J Respir Crit Care Med. 1995;152:231–240.PubMedGoogle Scholar
  23. 23.
    Fagon JY, Chastre J, Wolff M, et al. Invasive and non-invasive strategies for management of suspected ventilator-associated pneumonia. Ann Intern Med. 2000;132:621–630.PubMedGoogle Scholar
  24. 24.
    Shorr AF, Sherner JH, Jackson WL, et al. Invasive approaches to the diagnosis of ventilator-associated pneumonia: a meta-analysis. Crit Care Med. 2005;33:46–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Kollef MH, Bock KR, Richards RD, et al. The safety and diagnostic accuracy of minibronchoalveolar lavage in patients with suspected ventilator-associated pneumonia. Ann Intern Med. 1995;122:743–748.PubMedGoogle Scholar
  26. 26.
    Marik PE, Brown WJ. A comparison of bronchoscopic vs blind protected specimen brush sampling in patients with suspected ventilator-associated pneumonia. Chest. 1995;108:203–207.PubMedCrossRefGoogle Scholar
  27. 27.
    Marik PE, Careau P. A comparison of mini-bronchoalveolar lavage and blind -protected specimen brush sampling in ventilated patients with suspected pneumonia. J Crit Care. 1998;13:67–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Heyland D, Dodek P, Muscedere J, et al. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med. 2006;355:2619–2630.CrossRefGoogle Scholar
  29. 29.
    Heyland DK, Dodek P, Muscedere J, et al. Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med. 2008;36:737–744.PubMedCrossRefGoogle Scholar
  30. 30.
    Muscedere J, Dodek P, Keenan S, et al. Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: diagnosis and treatment. J Crit Care. 2008;23:138–147.PubMedCrossRefGoogle Scholar
  31. 31.
    Nseir S, Marquette CH. Diagnosis of hospital-acquired pneumonia: postmortem studies. Infect Dis Clin North Am. 2003;17:707–716.PubMedCrossRefGoogle Scholar
  32. 32.
    Malhotra AK, Riaz OJ, Duane TM, et al. Subthreshold quantitative bronchoalveolar lavage: clinical and therapeutic implications. J Trauma. 2008;65:580–588.PubMedCrossRefGoogle Scholar
  33. 33.
    Miller PR, Meredith JW, Chang MC. Optimal threshold for diagnosis of ventilator-associated pneumonia using bronchoalveolar lavage. J Trauma. 2003;55:263–267.PubMedCrossRefGoogle Scholar
  34. 34.
    Croce MA, Fabian TC, Mueller EW, et al. The appropriate diagnostic threshold for ventilator-associated pneumonia using quantitative cultures. J Trauma. 2004;56:931–934.PubMedCrossRefGoogle Scholar
  35. 35.
    Stryjewski ME, Sczech LA, Benjamin DK, et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus Bacteremia. Clin Infect Dis. 2007;44:190–196.PubMedCrossRefGoogle Scholar
  36. 36.
    Luyt CE, Combes A, Reynaud C, et al. Usefulness of procalcitonin for the diagnosis of ventilator-associated pneumonia. Intensive Care Med. 2008;34:1434–1440.PubMedCrossRefGoogle Scholar
  37. 37.
    Pelosi P, Barassi A, Severgnini P, et al. Prognostic role of clinical and laboratory criteria to identify early ventilator-associated pneumonia in brain injury. Chest. 2008;134:101–108.PubMedCrossRefGoogle Scholar
  38. 38.
    Duflo F, Debon R, Monneret G, et al. Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia. Anesthesiology. 2002;96:74–79.PubMedCrossRefGoogle Scholar
  39. 39.
    Ramirez P, Garcia MA, Ferrer M, et al. Sequential measurements of procalcitonin levels in diagnosing ventilator-associated pneumonia. Eur Respir J. 2008;31:356–362.PubMedCrossRefGoogle Scholar
  40. 40.
    Charles PE, Kus E, Aho S, et al. Serum procalcitonin for the early recognition of nosocomial infection in the critically ill patients: a preliminary report. BMC Infect Dis. 2009;9:49.PubMedCrossRefGoogle Scholar
  41. 41.
    Gibot S, Massin F, Le RP, et al. Surface and soluble triggering receptor expressed on myeloid cells-1: expression patterns in murine sepsis. Crit Care Med. 2005;33:1787–1793.PubMedCrossRefGoogle Scholar
  42. 42.
    Gibot S, Cravoisy A, Levy B, et al. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350:451–458.PubMedCrossRefGoogle Scholar
  43. 43.
    Determann RM, Millo JL, Gibot S, et al. Serial changes in soluble triggering receptor expressed on myeloid cells in the lung during development of ventilator-associated pneumonia. Intensive Care Med. 2005;31:1495–1500.PubMedCrossRefGoogle Scholar
  44. 44.
    Huh JW, Lim CM, Koh Y, et al. Diagnostic utility of the soluble triggering receptor expressed on myeloid cells-1 in bronchoalveolar lavage fluid from patients with bilateral lung infiltrates. Crit Care. 2008;12:R6.PubMedCrossRefGoogle Scholar
  45. 45.
    Kollef KE, Schramm GE, Wills AR, et al. Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant gram-negative bacteria. Chest. 2008;134:281–287.PubMedCrossRefGoogle Scholar
  46. 46.
    Iregui M, Ward S, Sherman G, et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262–268.PubMedCrossRefGoogle Scholar
  47. 47.
    Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, et al. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med. 2003;31:2742–2751.PubMedCrossRefGoogle Scholar
  48. 48.
    Garnacho-Montero J, Ortiz-Leyba C, Fernandez-Hinojosa E, et al. Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Intensive Care Med. 2005;31:649–655.PubMedCrossRefGoogle Scholar
  49. 49.
    Paul M, Benuri-Silbiger I, Soares-Weiser K, et al. Beta lactam monotherapy versus beta lactam–aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. Br Med J. 2004;328:668.CrossRefGoogle Scholar
  50. 50.
    Coffin SE, Klompas M, Classen D, et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(Suppl 1):S31–S40.PubMedCrossRefGoogle Scholar
  51. 51.
    Drakulovic MB, Torres A, Bauer TT, et al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet. 1999;354:1851–1858.PubMedCrossRefGoogle Scholar
  52. 52.
    Koeman M, van der Ven AJ, Hak E, et al. Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia. Am J Respir Crit Care Med. 2006;173:1348–1355.PubMedCrossRefGoogle Scholar
  53. 53.
    Miano TA, Reichert MG, Houle TT, et al. Nosocomial pneumonia risk and stress ulcer prophylaxis. A comparison of pantoprazole vs Ranitidine in cardiothoracic surgery patients. Chest. 2009;136:440–447.PubMedCrossRefGoogle Scholar
  54. 54.
    Manzano F, Fernandez-Mondejar E, Colmenero M, et al. Positive-end expiratory pressure reduces incidence of ventilator-associated pneumonia in nonhypoxemic patients. Crit Care Med. 2008;36:2225–2231.PubMedCrossRefGoogle Scholar
  55. 55.
    Ntoumenopoulos G, Presneill JJ, McElholum M, et al. Chest physiotherapy for the prevention of ventilator-associated pneumonia. Intensive Care Med. 2002;28:850–856.PubMedCrossRefGoogle Scholar
  56. 56.
    Marik PE, Fink MP. One good turn deserves another! Crit Care Med. 2002;30:2146–2148.PubMedCrossRefGoogle Scholar
  57. 57.
    Rumbak MJ, Newton M, Truncale T, et al. A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med. 2004;32:1689–1694.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care MedicineEastern Virginia Medical SchoolNorfolkUSA

Personalised recommendations