Stimuli-Sensitive Microhydrogels



Microhydrogels have become a very interesting and important material in hydrogels ­bioapplications. New techniques for the design, synthesis, characterization, function, and application of microhydrogels are providing exciting new possibilities in the micronized ­science. Hydrogels are a soft material with sizes and shapes that are subject to change depending on environmental conditions such as temperature, pH, coexisting materials, and light. Hydrogels that respond to these environmental stimuli and cause swelling changes in aqueous media are known as “stimuli-sensitive hydrogels.”


Inorganic Nanoparticles Pickering Emulsion Volume Phase Transition Temperature Hydroxypropyl Cellulose Ionic Crosslinking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRefGoogle Scholar
  2. 2.
    Schield HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  3. 3.
    Ito S (1987) Phase-transition of aqueous solution of poly(N-alkylacrylamide) derivatives. Effect of side chain structure. Kobunshi Ronbunshu 46(7):437–443CrossRefGoogle Scholar
  4. 4.
    Pelton RH, Chibante P (1986) Preparation of aqueous latexes with N-isopropylacrylamide. Coll Surf 20:247–256CrossRefGoogle Scholar
  5. 5.
    Kawaguchi H, Yamada Y, Kataoka S, Morita Y, Ohtsuka Y (1991) Hydrogel microspheres. 2. Precipitation copolymerization of acrylamide with comonomers to prepare monodisperse hydrogel microspheres. Polym J 23:955–962CrossRefGoogle Scholar
  6. 6.
    Nakazawa Y, Kamijo Y, Fujimoto K, Kawaguchi H, Yuguchi Y, Urakawa H, Kajiwara K (1996) Preparation and structural characteristics of stimuri-responsive hydrogel microsphere. Angew Makromol Chem 240:187–196CrossRefGoogle Scholar
  7. 7.
    Jones CD, Lyon LA (2003) Macromolecules 19:4544Google Scholar
  8. 8.
    Imaz A, Forcada J (2008) N-vinylcaprolactam-based microgels: effect of the concentration and type of cross-linker. J Polym Sci A Polym Chem 46(8):2766–2775CrossRefGoogle Scholar
  9. 9.
    Tsuji S, Kawaguchi H (2004) Temperature-sensitive hairy particles prepared by living radical graft polymerization. Langmuir 20:2449–2455CrossRefGoogle Scholar
  10. 10.
    Tsuji S, Kawaguchi H (2005) Self-assembly of poly(N-isopropylacrylamide)-carrying microspheres into two-dimensional colloidal arrays. Langmuir 21(6):2434–2437CrossRefGoogle Scholar
  11. 11.
    Tsuji S, Kawaguchi H (2006) Effect of graft chain length and structure design on temperature-sensitive hairy particles. Macromolecules 39(13):4338–4344CrossRefGoogle Scholar
  12. 12.
    Heskins M, Guillet JE, James E (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A2:1441–1455Google Scholar
  13. 13.
    Harsh DC, Gehrke SH (1991) J Control Release 17:175CrossRefGoogle Scholar
  14. 14.
    Lu X, Hu Z, Gao J (2001) Macromolecules 34:2242CrossRefGoogle Scholar
  15. 15.
    Sato T, Tsuji S, Kawaguchi H (2008) Preparation of functional nanoparticles by assembling block copolymers formed by living radical polymerization. Ind Eng Chem Res 47:6358–6361CrossRefGoogle Scholar
  16. 16.
    Guillot S, Delsanti M, Désert S, Langevin D (2003) Surfactant-Induced Collapse of Polymer Chains and Monodisperse Growth of Aggregates near the Precipitation Boundary in Carboxymethylcellulose−DTAB Aqueous Solutions. Langmuir 19(2):230–237CrossRefGoogle Scholar
  17. 17.
    Hoshino F, Fujimoto T, Kawaguchi H, Ohtsuka Y (1987) N-substituted acrylamide-styrne copolymer latexes II. Polymerization behavior and thermosensitive stability of latexes. Polym J 19(2):241–247CrossRefGoogle Scholar
  18. 18.
    Wu C, Zhou S (1997) Macromolecules 30:574CrossRefGoogle Scholar
  19. 19.
    Ohshima H, Makino K, Kato T, Fujimoto K, Kondo T (1993) Kawaguchi, Electrophoretic mobility of latex particles covered with temperature-sensitive hydrogel layers. J Colloid Interface Sci 159:512–514CrossRefGoogle Scholar
  20. 20.
    Rubio RJ, Frick B, Seydel T, Stamm M, Fernandez BA, Lopez CE (2008) Polymer chain dynamics of core-shell thermosensitive microgels. Macromolecules 41(13):4739–4745CrossRefGoogle Scholar
  21. 21.
    Tsuji S, Kawaguchi H (2008) Thermosensitive Pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles. Langmuir 24(7):3300–3305CrossRefGoogle Scholar
  22. 22.
    Brugger B, Richtering W (2008) Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers: microgels versus low molecular weight polymers. Langmuir 24(15):7769–7777CrossRefGoogle Scholar
  23. 23.
    Suzuki D, Tsuji S, Kawaguchi H (2008) Janus microgels prepared by surfactant-free Pickering emulsion-based modification and their self-assembly. J Am Chem Soc 129(26):8088–8089CrossRefGoogle Scholar
  24. 24.
    Ni H, Kawaguchi H, Endo T (2007) Preparation of pH-sensitive hydrogel microspheres of poly(acrylamide-co-methacrylic acid) with sharp pH–volume transition. Colloid Polym Sci 285:819–826CrossRefGoogle Scholar
  25. 25.
    Ni H, Kawaguchi H (2007) Preparation of amphoteric microgels of poly (acrylamide/methacrylicacid/dimethylamino ethylene methacrylate) with a novel pH-volume transition. Macromolecules 40:6370–6376CrossRefGoogle Scholar
  26. 26.
    Freemont TJ, Saunders BR (2008) pH-Responsive microgel dispersions for repairing damaged load-bearing soft tissue. Soft Matter 4(5):919–924CrossRefGoogle Scholar
  27. 27.
    Dalmont H, Pinprayoon O, Saunders BR (2008) Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium. Langmuir 24:2834–2840CrossRefGoogle Scholar
  28. 28.
    Amalvy JL, Wanless EJ, Li Y, Michailidou V, Armes SP (2004) Synthesis and characterization of novel pH responsive microgels based on tertiary amine methacrylates. Langmuir 20:8992–8999CrossRefGoogle Scholar
  29. 29.
    Teng D, Hou J, Zhang X, Wang X, Wang Z, Li C (2008) Glucosamine-carrying temperature- and pH-sensitive microgels: preparation, characterization, and in vitro drug release studies. J Colloid Interface Sci 322(1):333–341CrossRefGoogle Scholar
  30. 30.
    Bredley M, Vincent B (2008) Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: their characterization and the uptake and release of anionic surfactant. Langmuir 24(6):2421–2425CrossRefGoogle Scholar
  31. 31.
    Ho BS, Tan BH, Tan JPK, Tam KC (2008) Inverse microemulsion polymerization of sterically stabilized polyampholyte microgels. Langmuir 24(15):7698–7703CrossRefGoogle Scholar
  32. 32.
    Ni P (2008) Nanoparticles comprising pH/temperature-responsive amphiphilic block copolymers and their applications in biotechnology. In: Elaissari A (ed) Colloidal nanoparticles in biotechnology. Wiley, New YorkGoogle Scholar
  33. 33.
    Kleinen J, Richtering W (2008) Defined complexes of negatively charged multisensitive poly(N-isopropylacrylamide-co-methacrylic acid) microgels and poly(diallyldimethylammonium chloride). Macromolecules 41:1785–1790CrossRefGoogle Scholar
  34. 34.
    Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126(25):7908–7914CrossRefGoogle Scholar
  35. 35.
    Liu S, Weaver JVM, Save M, Armes SP (2003) Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18:8350CrossRefGoogle Scholar
  36. 36.
    Nassif N, Gehrke N, Pinna N, Shirshova N, Tauer K, Antonietti M, Colfen H (2005) Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. Angew Chem Int Ed Engl 117:6158CrossRefGoogle Scholar
  37. 37.
    Zhang Q, Tang Y, Zha L, Ma J, Liang B (2008) Effects of hectorite content on the temperature-sensitivity of PNIPAM microgels. Eur Polym J 44(5):1358–1367CrossRefGoogle Scholar
  38. 38.
    Suzuki D, Kawaguchi H (2005) Modification of gold nanoparticle composite nanostructures using thermosensitive core-shell particles as a template. Langmuir 21(18):8175–8179CrossRefGoogle Scholar
  39. 39.
    Suzuki D, Kawaguchi H (2005) Gold nanoparticle localization at the core surface by using thermosensitive core-shell particles as a template. Langmuir 21:12016–12024CrossRefGoogle Scholar
  40. 40.
    Hantzschel N, Zhang F, Eckert F, Pich A, Winnik M (2007) Poly(N-vinylcaprolactam-co-glycidyl methacrylate) aqueous microgels labeled with fluorescent LaF3:Eu nanoparticles. Langmuir 23:10793–10800CrossRefGoogle Scholar
  41. 41.
    Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22:3818–3822CrossRefGoogle Scholar
  42. 42.
    Suzuki D, McGrath J, Kawguchi H, Lyon LA (2007) Colloidal crystals of thermosensitive, core/shell hybrid microgels. J Phys Chem C 111:5667–5672CrossRefGoogle Scholar
  43. 43.
    Schrinner M, Proch S, Mei Y, Kempe R, Miyajima N, Ballauff M (2008) Stable bimetallic gold-platinum nanoparticles immobilized on spherical polyelectrolyte brushes: synthesis, characterization, and application for the oxidation of alcohols. Adv Mater 20(10):1928–1933CrossRefGoogle Scholar
  44. 44.
    Wong JE, Gaharwar AK, Mueller-Schulte D, Bahadur D, Richtering W (2008) Dual-stimuli responsive PNIPAM microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive. J Colloid Interface Sci 324:47–54CrossRefGoogle Scholar
  45. 45.
    Suzuki D, Kawaguchi H (2006) Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core. Colloid Polym Sci 284:1443–1451CrossRefGoogle Scholar
  46. 46.
    Agrawal M, Pich A, Gupta S, Zafeiropoulos NE, Rubio-Retama J, Simon F, Stamm M (2008) Temperature sensitive hybrid microgels loaded with ZnO nanoparticles. J Mater Chem 18(22):2581–2586CrossRefGoogle Scholar
  47. 47.
    Wang P, Chen D, Tang FQ (2006) Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir 22:4832–4835CrossRefGoogle Scholar
  48. 48.
    Kawaguchi H, Suzuki D, Kaneshima D (2008) Synthesis and application of polymeric microspheres containing inorganic particles. Trans Mater Res Soc Jpn 33(2):205–208Google Scholar
  49. 49.
    Coutinho CA, Harrinauth RK, Gupta VK (2008) Settling characteristics of composites of PNIPAM microgels and TiO2 nanoparticles. Colloids Surf A Physicochem Eng Asp 318(1–3):111–121CrossRefGoogle Scholar
  50. 50.
    Shen L, Pich A, Fava D, Wang M, Kumar S, Wu C, Scholes GD, Winnik MA (2008) Loading quantum dots into thermo-responsive microgels by reversible transfer from organic solvents to water. J Mater Chem 18(7):763–770CrossRefGoogle Scholar
  51. 51.
    Zhao X, Gan J, Chuchi S, Liu G, Chen A (2007) Poly(N-isopropyl acrylamide) microgel doped with luminescent PbS quantum dots. Chinese J React Polym 16(1–2):55–60Google Scholar
  52. 52.
    Hain J, Eckert F, Pich A, Hans-Juergen A (2008) Multi-sensitive microgels filled with conducting poly(3, 4-ethylenedioxythiophene) nanorods. Macromol Rapid Commun 29(6):472–478CrossRefGoogle Scholar
  53. 53.
    Suzuki D, Yoshida R (2008) Temporal control of self-oscillation for microgels by cross-linking network structure. Macromolecules 41(15):5830–5838CrossRefGoogle Scholar
  54. 54.
    Zhou J, Wang G, Marquez M, Hu ZB (2008) The formation of crystalline hydrogel films by self-crosslinking microgels. Soft Matter 5:820–826CrossRefGoogle Scholar
  55. 55.
    Musch J, Schneider S, Lindner P, Richtering W (2008) Unperturbed volume transition of thermosensitive poly(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix. J Phys Chem B 112(20):6309–6314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryKanagawa UniversityYokohamaJapan

Personalised recommendations