Advertisement

Feedback Control Systems Using Environmentally and Enzymatically Sensitive Hydrogels

  • Irma Y. Sanchez
  • Nicholas A. Peppas
Chapter

Abstract

A large number of hydrogels can be classified as smart materials that offer a natural integration of sensing, actuating, and regulating functions applicable to feedback control systems. This multifunctionality added to biocompatibility and enzyme-based selectivity characteristics enables self-regulation or implicit control in hydrogels-based devices to maintain physiological variables at a desired level or range by appropriate drug release. Therefore, hydrogels can enhance the performance of individual actuator and sensing units. Applications of hydrogels in explicit and implicit controller systems are presented based on recent experimental and theoretical research studies. Integration of cascade and feedforward control types of functionalities in hydrogels systems is suggested from their capability to respond to more than one stimulus. Enzymatic glucose sensing and insulin delivery are often used as references for the discussion of hydrogels in the development of sensor, actuator, and control technology due to the relevance of the diabetes disease.

Keywords

Drug Release Lower Critical Solution Temperature Gluconic Acid Biot Number Insulin Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Heller A (2005) Integrated medical feedback systems for drug delivery. AIChE J 51(4):1054–1066CrossRefGoogle Scholar
  2. 2.
    Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10(4):40–48CrossRefGoogle Scholar
  3. 3.
    Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653):829–832CrossRefGoogle Scholar
  4. 4.
    Ben-Moshe M, Alexeev VL, Asher SA (2006) Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 78(14):5149–5157CrossRefGoogle Scholar
  5. 5.
    Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel microlenses. J Am Chem Soc 127(26):9588–9592CrossRefGoogle Scholar
  6. 6.
    Kim H, Cohen RE, Hammond PT, Irvine DJ (2006) Live lymphocyte array for biosensing. Adv Funct Mater 16(10):1313–1323CrossRefGoogle Scholar
  7. 7.
    Hilt JZ, Gupta AK, Bashir R, Peppas NA (2003) Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed Microdevices 5(3):177–184CrossRefGoogle Scholar
  8. 8.
    Klumb LA, Horbett TA (1991) Design of insulin delivery devices based on glucose sensitive membranes. J Control Release 18:59–80CrossRefGoogle Scholar
  9. 9.
    Jiménez C, Bartrol J, de Rooij NF, Koudelka-Hep M (1997) Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal Chim Acta 351(1):169–176CrossRefGoogle Scholar
  10. 10.
    Podual K, Doyle FJ III, Peppas NA (2000) Dynamic behavior of glucose oxidase-containing microparticles of poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH. Biomaterials 21:1439–1450CrossRefGoogle Scholar
  11. 11.
    Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102CrossRefGoogle Scholar
  12. 12.
    Karmalkar RN, Premnath V, Kulkarni MG, Mashelkar RA (2000) Switching biomimetic hydrogels. Proc R Soc Lond, Ser A 456(1998):1305–1320CrossRefGoogle Scholar
  13. 13.
    Kost J, Langer R (1992) Responsive polymer systems for controlled delivery of therapeutics. Trends Biotechnol 10(4):127–131Google Scholar
  14. 14.
    Traitel T, Goldbart R, Kost J (2008) Smart polymers for responsive drug-delivery systems. J Biomater Sci Polym Ed 19(6):755–767CrossRefGoogle Scholar
  15. 15.
    Saslavski O, Couvrer P, Peppas NA (1998) In: Heller J, Harris F, Lohmann H, Merkle H, Robinson J (eds) Controlled release of bioactive materials, vol 1. Controlled Release Society, Basel, p 26Google Scholar
  16. 16.
    Aschkenasy C, Kost J (2005) On-demand release by ultrasound from osmotically swollen hydrophobic matrices. J Control Release 110(1):58–66CrossRefGoogle Scholar
  17. 17.
    Kwok C, Mourad P, Crum L, Ratner B (2001) Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J Biomed Mater Res 57:151–164CrossRefGoogle Scholar
  18. 18.
    Norris P, Noble M, Francolini I, Vinogradov AM, Stewart PS, Ratner BD, Costerton JW, Stoodley P (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Agents Chemother 49:4272–4279CrossRefGoogle Scholar
  19. 19.
    Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRefGoogle Scholar
  20. 20.
    Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210CrossRefGoogle Scholar
  21. 21.
    Bassetti MJ, Chatterjee AN, De SK, Aluru NR, Beebe DJ (2005) Development and modeling of electrically triggered hydrogels for microfluidic applications. J Microelectromech Syst 14(5):1198–1207CrossRefGoogle Scholar
  22. 22.
    West J (2003) Drug delivery – pulsed polymers. Nat Mater 2(11):709–710CrossRefGoogle Scholar
  23. 23.
    Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Photoinduced phase transition of gels. Macromolecules 23(5):1517–1519CrossRefGoogle Scholar
  24. 24.
    Lee JK, Lee H, Jang E, Lee SD, Kim SJ (2005) Photo-triggering of the membrane gates in photo-responsive polymer for drug release. In: Engineering in medicine and biology society. 27th Annual International Conference of the IEEE-EMBS. Shanghai, China, pp 5069-5072Google Scholar
  25. 25.
    Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRefGoogle Scholar
  26. 26.
    Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434(7035):879–882CrossRefGoogle Scholar
  27. 27.
    Matsumoto S, Yamaguchi S, Ueno S, Komatsu H, Ikeda M, Ishizuka K, Iko Y, Tabata KV, Aoki H, Ito S, Noji H, Hamachi I (2008) Photo gel-sol/sol-gel transition and its patterning of a supramolcecular hydrogel as stimuli-responsive biomaterials. Chem Eur J 14(13):3977–3986CrossRefGoogle Scholar
  28. 28.
    Yamaguchi S, Matsumoto S, Ishizuka K, Iko Y, Tabata KV, Arata HF, Fujita H, Noji H, Hamachi I (2008) Thermally responsive supramolecular nanomeshes for on/off switching of the rotary motion of F1-ATPase at the single-molecule level. Chem Eur J 14:1891–1896CrossRefGoogle Scholar
  29. 29.
    Kim JH, Lee TR (2008) Thermo-responsive hydrogel-coated gold nanoshells for in vivo drug delivery. J Biomed Pharm Eng 2(1):29–35Google Scholar
  30. 30.
    Owens DE, Jian YC, Fang JE, Slaughter BV, Chen YH, Peppas NA (2007) Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40:7306–7310CrossRefGoogle Scholar
  31. 31.
    Owens DE, Eby JK, Jian Y, Peppas NA (2007) Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems. J Biomed Mater Res 83A:692–695CrossRefGoogle Scholar
  32. 32.
    Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, Tang Y, Xu J (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39(19):6584–6589CrossRefGoogle Scholar
  33. 33.
    Park TG, Hoffman AS (1993) Thermal cycling effects on the bioreactor performances of immobilized beta-galactosidase in temperature-sensitive hydrogel beads. Enzyme Microb Technol 15(6):476–482CrossRefGoogle Scholar
  34. 34.
    Ehrick J, Deo S, Browning T, Bachas L, Madou M, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4(4):298–302CrossRefGoogle Scholar
  35. 35.
    Jun HW, Yuwono V, Paramonov SE, Hartgerink JD (2005) Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv Mater 17(21):2612–2617CrossRefGoogle Scholar
  36. 36.
    Li CM, Madsen J, Armes SP, Lewis AL (2006) A new class of biochemically degradable, stimulus-responsive triblock copolymer gelators. Angew Chem Int Ed 45(21):3510–3513CrossRefGoogle Scholar
  37. 37.
    Liu RH, Yu Q, Beebe DJ (2001) Fabrication and characterization of hydrogel based microvalves. J Microelectromech Syst 11:45–53CrossRefGoogle Scholar
  38. 38.
    Beebe DJ, Moore J, Bauer J, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRefGoogle Scholar
  39. 39.
    Yu Q, Bauer JM, Moore JS, Beebe DJ (2001) Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett 78:2589–2591CrossRefGoogle Scholar
  40. 40.
    Zourob M, Gough JE, Ulijn RV (2006) A micropatterned hydrogel platform for chemical synthesis and biological analysis. Adv Mater 18(5):655–659CrossRefGoogle Scholar
  41. 41.
    Hall H, Hubbell JA (2005) Modified fibrin hydrogels stimulate angiogenesis in vivo: potential application to increase perfusion of ischemic tissues. Materwiss Werksttech 36(12):768–774CrossRefGoogle Scholar
  42. 42.
    Silva GA, Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRefGoogle Scholar
  43. 43.
    Vemula PK, Cruikshank GA, Karp JF, John G (2009) Self-assembled prodrugs: an enzymatically triggered-drug delivery platform. Biomaterials 30:383–393CrossRefGoogle Scholar
  44. 44.
    Plunkett KN, Berkowski KL, Moore JS (2005) Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules 6(2):632–637CrossRefGoogle Scholar
  45. 45.
    Lee MR, Baek KH, Jin HJ, Jung YG, Shin I (2004) Targeted enzyme-responsive drug carriers: studies on the delivery of a combination of drugs. Angew Chem Int Ed 43(13):1675–1678CrossRefGoogle Scholar
  46. 46.
    van Bommel KJC, Stuart MCA, Feringa BL, van Esch J (2005) Two-stage enzyme mediated drug release from LMWG hydrogels. Org Biomol Chem 3(16):2917–2920CrossRefGoogle Scholar
  47. 47.
    Kumashiro T, Ooya T, Yui N (2004) Dextran hydrogels containing poly(N-isopropyl acrylamide) as grafts and cross-linkers exhibiting enzymatic regulation in a specific temperature range. Macromol Rapid Commun 25:867CrossRefGoogle Scholar
  48. 48.
    Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579CrossRefGoogle Scholar
  49. 49.
    Peppas NA, Wood KM, Blanchette JO (2004) Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther 4(6):881–887CrossRefGoogle Scholar
  50. 50.
    Sánchez-Chávez IY, Martínez-Chapa SO, Peppas NA (2008) Computer evaluation of hydrogel-based systems for diabetes closed Loop treatment. AIChE J 54(7):1901–1911CrossRefGoogle Scholar
  51. 51.
    Lee SH, Eddington DT, Kim YM, Kim W, Beebe DJ (2003) Control mechanism of an organic self-regulating microfluidic system. J Electromech Syst 12(6):848–854CrossRefGoogle Scholar
  52. 52.
    Agarwal AK, Dong L, Beebe DJ, Jiang H (2007) Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab Chip 7(3):310–315CrossRefGoogle Scholar
  53. 53.
    Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRefGoogle Scholar
  54. 54.
    Nakayama G, Roskos K, Fritzinger B, Heller J (1995) A study of reversibly inactivated lipases for use in a morphine-triggered naltrexone delivery system. J Biomed Mater Res 29:1389–1396CrossRefGoogle Scholar
  55. 55.
    Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360CrossRefGoogle Scholar
  56. 56.
    Farmer TG, Edgar TF, Peppas NA (2008) In vivo simulations of the intravenous dynamics of submicrometer particles of pH-responsive cationic hydrogels in diabetic patients. Ind Eng Chem Res 47(24):10053–10063CrossRefGoogle Scholar
  57. 57.
    Sanchez-Chávez IY, Morales-Menéndez R, Martínez-Chapa SO (2009) Glucose optimal control system in diabetes treatment. Appl Math Comput 209(1):19–30CrossRefGoogle Scholar
  58. 58.
    Parker RS, Doyle FJ III, Ward JH, Peppas NA (2000) Robust H glucose control in diabetes using a physiological model. AIChE J 46:2537–2549CrossRefGoogle Scholar
  59. 59.
    Parker R, Doyle F III, Peppas NA (1999) Model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 46(2):148–157CrossRefGoogle Scholar
  60. 60.
    Zhang K, Wu X (2002) Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J Control Release 80:169–178CrossRefGoogle Scholar
  61. 61.
    Cheng SY, Constantinidis I, Sambanis A (2006) Use of glucose-responsive material to regulate insulin release from constitutively secreting cells. Biotechnol Bioeng 93(6):1079–1088CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechatronics and AutomationTecnologico de MonterreyMonterreyMexico
  2. 2.Department of Biomedical EngineeringThe University of Texas AustinAustinUSA

Personalised recommendations