Advertisement

Self-assembled Nanogel Engineering

  • Nobuyuki Morimoto
  • Kazunari Akiyoshi
Chapter

Abstract

Functional nanogels have been designed by the self-assembly of various associating polymers. In particular, cholesterol-bearing polysaccharides form physically crosslinked nanogels by self-assembly in water. The nanogels trap proteins mainly by hydrophobic interaction and show chaperon-like activity. They are useful as polymeric nanocarriers especially in protein delivery. Macrogels with well-defined nanostructures were obtained by self-assembly and chemical crosslinking of these nanogels as building blocks.

Keywords

Raft Polymerization PNIPAM Chain Semidilute Solution PNIPAM Hydrogel Spiropyran Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708CrossRefGoogle Scholar
  2. 2.
    Oh JK, Drumright R, Siegwart DJ et al (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477CrossRefGoogle Scholar
  3. 3.
    Akiyoshi K, Deguchi S, Moriguchi N et al (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068CrossRefGoogle Scholar
  4. 4.
    Akiyoshi K, Deguchi S, Tajima H et al (1997) Microscopic structure and thermoresponsiveness of a hydrogels nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 30:857–861CrossRefGoogle Scholar
  5. 5.
    Kuroda K, Fujimoto K, Sunamoto J et al (2002) Hierarchical self-assembly of hydrophobically modified pullulan in water: gelsation by networks of nanoparticles. Langmuir 18:3780–3786CrossRefGoogle Scholar
  6. 6.
    Akiyoshi K, Sunamoto J (1996) Supramolecular assembly of hydrophobized polysaccharide. Supramol Sci 3:157–163CrossRefGoogle Scholar
  7. 7.
    Morimoto N, Nomura SM, Miyazawa N et al (2006) Nanogel engineered designs for polymeric drug delivery. In: Svenson S (ed) Polymeric drug delivery volume ii – polymeric matrices and drug particle engineering, ACS Symposium Series 924. American Chemical Society, Washington, DCGoogle Scholar
  8. 8.
    Akiyama E, Morimoto N, Kujawa P et al (2007) Self-assembled nanogels of cholesteryl-modified polysaccharides: effect of the polysaccharide structure on their association characteristics in the dilute and semi-dilute regimes. Biomacromolecules 8:2366–2373CrossRefGoogle Scholar
  9. 9.
    Akiyoshi K, Ueminami A, Kurumada S et al (2000) Self-association of cholesteryl-bearing poly(l-lysine) in water and control of its secondary structure by host-guest interaction with cyclodextrin. Macromolecules 33:6752–6756CrossRefGoogle Scholar
  10. 10.
    Akiyoshi K, Kang E-C, Kurumada S et al (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-­isopropylacrylamides). Macromolecules 33:3244–3249CrossRefGoogle Scholar
  11. 11.
    Morimoto N, Winnik FM, Akiyoshi K (2007) Botryoidal assembly of cholesteryl-pullulan/poly(N-­isopropylacrylamide) nanogels. Langmuir 23:217–223CrossRefGoogle Scholar
  12. 12.
    Morimoto N, Qiu XP, Winnik FM et al (2008) Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41:5985–5987CrossRefGoogle Scholar
  13. 13.
    Morimoto N, Obeid R, Yamane S et al (2009) Composite nanomaterials by self-assembly and controlled crystallization of poly(2-isopropyl-2-oxazoline)-grafted polysaccharide. Soft Matter 5:1597–1600CrossRefGoogle Scholar
  14. 14.
    Hirakura T, Nomura Y, Aoyama Y et al (2004) Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules 5:1804–1809CrossRefGoogle Scholar
  15. 15.
    Nishikawa T, Akiyoshi K, Sunamoto J (1994) Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and alpha-chymotrypsin. Macromolecules 27:7654–7659CrossRefGoogle Scholar
  16. 16.
    Nishikawa T, Akiyoshi K, Sunamoto J (1996) Macromolecular complexation between bovine serum albumin and self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. J Am Chem Soc 118:6110–6115CrossRefGoogle Scholar
  17. 17.
    Akiyoshi K, Sasaki Y, Sunamoto J (1999) Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconj Chem 10:321–324CrossRefGoogle Scholar
  18. 18.
    Nomura Y, Ikeda M, Yamaguchi N et al (2003) Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett 553:271–276CrossRefGoogle Scholar
  19. 19.
    Nomura Y, Sasaki Y, Takagi M et al (2005) Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: heat shock protein-like activity of artificial molecular chaperone. Biomacromolecules 6:447–452CrossRefGoogle Scholar
  20. 20.
    Kopecek J (2002) Swell gels. Nature 417:388–390CrossRefGoogle Scholar
  21. 21.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12CrossRefGoogle Scholar
  22. 22.
    Byrne ME, Park K, Peppas NA (2002) Molecular imprinting within hydrogels. Adv Drug Deliv Rev 54:149–161CrossRefGoogle Scholar
  23. 23.
    Akiyoshi K, Kobayashi S, Shichibe S et al (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–320CrossRefGoogle Scholar
  24. 24.
    Gu X-G, Schmitt M, Hiasa A et al (1998) A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2 expressing murine sarcoma. Cancer Res 58:3385–3390Google Scholar
  25. 25.
    Ikuta Y, Katayama N, Wang L et al (2002) Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 99:3717–3724CrossRefGoogle Scholar
  26. 26.
    Kitano S, Kageyama S, Nagata Y et al (2006) Induction of HER2-specific T Cell immune responses in patients vaccinated with truncated HER2 A. Clin Cancer Res 2:7397–7405CrossRefGoogle Scholar
  27. 27.
    Kageyama S, Kitano S, Hirayama M et al (2008) Humoral immune responses in patients vaccinated with HER2 protein complexed with cholesteryl pullulan nanogel (CHP-HER2). Cancer Sci 99:601–607CrossRefGoogle Scholar
  28. 28.
    Uenaka A, Wada H, Isobe M et al (2007) T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein. Cancer Immun 7:9–20Google Scholar
  29. 29.
    Alles N, Soysa NS, Mian AH et al (2009) Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Eur J Pharm Sci 37:83–88CrossRefGoogle Scholar
  30. 30.
    Shimizu T, Kishida T, Hasegawa U et al (2008) Nanogel DDS enables sustained release of a cytokine for tumor immunotherapy. Biochem Biophys Res Commun 367:330–335CrossRefGoogle Scholar
  31. 31.
    Ayame H, Morimoto N, Akiyoshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery system. Bioconj Chem 19:882–890CrossRefGoogle Scholar
  32. 32.
    Morimoto N, Tamada J, Sawada S et al (2009) Interaction of self-assembled cationic nanogels with oligo-dna and function as artificial nucleic acid chaperone. Chem Lett 38:496–497CrossRefGoogle Scholar
  33. 33.
    Sugawara A, Yamane S, Akiyoshi K (2006) Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromol Rapid Commun 27:441–446CrossRefGoogle Scholar
  34. 34.
    Yamane S, Sugawara A, Sasaki Y et al (2009) Nanogel-calcium phosphate hybrid nanoparticles with negative or positive charges for potential biomedical applications. Bull Chem Soc Jpn 82:416–418CrossRefGoogle Scholar
  35. 35.
    Yamane S, Sugawara A, Watanabe A et al (2009) Hybrid nanoapatitby polysaccharide nanogel-templated mineralization. J Bioact Compat Polym 24:129–150CrossRefGoogle Scholar
  36. 36.
    Hasegawa U, Nomura SM, Kaul CS et al (2005) Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–921CrossRefGoogle Scholar
  37. 37.
    Toita S, Hasegawa U, Koga H et al (2008) Protein-conjugated QD effectively delivered into living cells by a cationic nanogel. J Nanosci Nanotechol 8:1–7CrossRefGoogle Scholar
  38. 38.
    Fukui T, Kobayashi H, Hasegawa U et al (2007) Intracellular delivery of nanogel-quantum dot hybrid nanoparticles into human periodontal ligament cells. Drug Metab Lett 1:131–135CrossRefGoogle Scholar
  39. 39.
    Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefGoogle Scholar
  40. 40.
    Morimoto N, Endo T, Iwasaki Y et al (2005) Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity. Biomacromolecules 6:1829–1834CrossRefGoogle Scholar
  41. 41.
    Morimoto N, Ohki T, Kurita K et al (2008) Thermo-responsive hydrogels with nanodomains: rapid shrinking of nanogel-crosslinking hydrogel of poly (N-isopropyl acrylamide). Macromol Rapid Commun 29:672–676CrossRefGoogle Scholar
  42. 42.
    Kato N, Hasegawa U, Morimoto N et al (2007) Nanogel-based delivery system enhances PGE2 effects on bone formation. J Cell Biochem 101:1063–1070CrossRefGoogle Scholar
  43. 43.
    Hayashi C, Hasegawa U, Saita Y et al (2009) Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. J Cell Phys 220:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Materials Processing, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations