Electroconductive Hydrogels

  • Ann M. Wilson
  • Gusphyl Justin
  • Anthony Guiseppi-Elie


Methods for the synthesis of electroconductive hydrogels (ECH), as polymer blends and as polymer conetworks via chemical oxidation, electrochemical, or a combination of chemical oxidation followed by electrochemical synthesis techniques, are described. Specific examples are introduced to illustrate the preparation of ECHs synthesized from poly(HEMA)-based hydrogels and polyaniline or from poly(HEMA)-based hydrogels and polypyrrole. The key applications of ECHs, as biorecognition membranes for implantable biosensors, as electrostimulated drug eluting devices, and as the low interfacial impedance layer on neuronal prostheses, provide great new horizons for biodetection devices.


Deep Brain Stimulation Reactive Functional Group Pyrrole Monomer Hydrogel Membrane Glycol Diacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172, by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B), and by ABTECH Scientific, Inc.


  1. 1.
    Guiseppi-Elie A, Sheppard NF Jr (1995) Conferring biospecificity to electroconductive polymer-based biosensor devices. In: ACS Northeast Regional Meeting (NERM), Rochester, NY, 22–25 October 1995Google Scholar
  2. 2.
    Guiseppi-Elie A, Wilson AM, Sujdak AR, Brown KE (1997) Electroconductive hydrogels: novel materials for the controlled electrorelease of bioactive peptides. Polymer Prepr 38(2):608Google Scholar
  3. 3.
    Guiseppi-Elie A, Sujdak A, Wilson AM (1997) Electroconductive hydrogels: electrical, electrochemical and impedance properties. In: Fall MRS Meeting Symposium J, Boston, 1–5 December 1997Google Scholar
  4. 4.
    Small CJ, Too CO, Wallace GG (1997) Responsive conducting polymer-hydrogel composites. Polym Gels Netw 5(3):251–265CrossRefGoogle Scholar
  5. 5.
    Guiseppi-Elie A, Wilson AM, Sudjak AS (1998) Electroconductive gels for controlled electrorelease of bioactive peptides. In: ACS symposium series, vol 709. ACS Publications, Washington, DC, pp 185–202Google Scholar
  6. 6.
    Guiseppi-Elie A, Brahim S, Wilson A (2006) Biosensors based on electrically conducting polymers. In: Skotheim T, Reynolds JR (eds) Handbook of conducting polymers: conjugated polymer processing and applications, 3rd edn. Marcel Dekker, New York, pp 435–479Google Scholar
  7. 7.
    Iwuoha EI, Wilson A, Howel M, Mathebe NGR, Montane-Jaime K, Narinesingh D, Guiseppi-Elie A (2004) Cytochrome P4502D6 (CYP2D6) bioelectrode for fluoxetine. Anal Lett 37(5):943–956Google Scholar
  8. 8.
    Owino JHO, Arotiba OA, Baker PGL, Guiseppi-Elie A, Iwuoha EI (2008) Synthesis and characterizationof poly (2-hydroxyethyl methacrylate)-polyaniline based hydrogels composites. React Funct Polym 68(8):1239–1244CrossRefGoogle Scholar
  9. 9.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2001) Amperometric determination of cholesterol in serum using a cholesterol oxidase biosensor with a polypyrrole / hydrogel membrane. Anal Chim Acta 448:27–36CrossRefGoogle Scholar
  10. 10.
    Guiseppi-Elie A, Brahim S, Narinesingh D (2001) Composite hydrogels containing polypyrrole as support membranes for amperometric enzyme biosensors. J Macromol Sci Pure Appl Chem A38(12):1575–1591CrossRefGoogle Scholar
  11. 11.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Polypyrrole-hydrogel composites for the construction of clinically important biosensors. Biosens Bioelectron 17(1–2):53–59CrossRefGoogle Scholar
  12. 12.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Interferent suppression using a novel polypyrrole-containing hydrogel in amperometric enzyme biosensors. Electroanalysis 14(9):627–633CrossRefGoogle Scholar
  13. 13.
    Kim D-H, Abidian M, Martin DC (2004) Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J Biomed Mater Res A 71A(4):577–585CrossRefGoogle Scholar
  14. 14.
    Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56(2):261–272CrossRefGoogle Scholar
  15. 15.
    Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29(24–25):3393–3399CrossRefGoogle Scholar
  16. 16.
    Lira LM, Cordoba de Torresi SI (2005) Conducting polymer-hydrogel composites for electrochemical release devices. Electrochem Commun 7:717–723CrossRefGoogle Scholar
  17. 17.
    Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92(1–2):1–17CrossRefGoogle Scholar
  18. 18.
    Wellinghoff ST, Baker CK (1991) Electrochemical drug release and article. US Patent 4,994,023Google Scholar
  19. 19.
    Pernaut J-M, Reynolds JR (2000) Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J Phys Chem B 104(17):4080–4090CrossRefGoogle Scholar
  20. 20.
    George PM, LaVan DA, Burdick JA, Chen CY, Liang E, Langer R (2006) Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv Mater 18(5):577–581CrossRefGoogle Scholar
  21. 21.
    Guiseppi-Elie A, Brahim S, Slaughter G, Ward K (2005) Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sens J 5(3):345–355CrossRefGoogle Scholar
  22. 22.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens Bioelectron 17(11–12):973–981CrossRefGoogle Scholar
  23. 23.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart materials: kinetics of immobilized enzymes in p(HEMA)/p(Pyrrole) hydrogels in amperometric biosensors. Macromol Symp 186:63–73CrossRefGoogle Scholar
  24. 24.
    George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R, Testa C, Alexander PM, Langer R, Sur M (2005) Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 26(17):3511–3519CrossRefGoogle Scholar
  25. 25.
    Guimard N, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical applications. Prog Polym Sci 32:876–892CrossRefGoogle Scholar
  26. 26.
    Ateh DD, Navasaria HA, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3(11):741–752CrossRefGoogle Scholar
  27. 27.
    Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou Y-F, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3:034124CrossRefGoogle Scholar
  28. 28.
    Skotheim T, Reynolds JR (2007) Handbook of conducting polymers: conjugated polymer processing and applications, 3rd edn. Taylor and Francis, New YorkGoogle Scholar
  29. 29.
    Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34:1053–1060CrossRefGoogle Scholar
  30. 30.
    Jia W, Tchoudakov R, Segal E, Narkis M, Siegmann A (2003) Electrically conductive composites based on epoxy resin containing polyaniline-DBSA- and polyaniline-DBSA-coated glass fibers. J Appl Polym Sci 91(2):1329–1334CrossRefGoogle Scholar
  31. 31.
    Trojanowicz M (2003) Application of conducting polymers in chemical analysis. Microchim Acta 143(2–3):75–91Google Scholar
  32. 32.
    Ogurtsov NA, Pud AA, Kamarchik P, Shapoval GS (2004) Corrosion inhibition of aluminum alloy in chloride mediums by undoped and doped forms of polyaniline. Synth Met 143:43–47CrossRefGoogle Scholar
  33. 33.
    Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578:59–74CrossRefGoogle Scholar
  34. 34.
    Sadik OA (1999) Bioaffinity sensors based on conducting polymers: a short review. Electroanalysis 11(12):839–844CrossRefGoogle Scholar
  35. 35.
    Jaramillo A, Spurlock LD, Young V, Brajter-Toth A (1999) XPS characterization of nanosized overoxidized polypyrrole films on graphite electrodes. Analyst 124:1215–1221CrossRefGoogle Scholar
  36. 36.
    Wanekaya A, Sadik OA (2002) Electrochemical detection of lead using overoxidized polypyrrole films. J Electroanal Chem 537(1–2):135–143Google Scholar
  37. 37.
    Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408CrossRefGoogle Scholar
  38. 38.
    Trigo R, Blanco M, Huerta P, Olmo R, Teijon J (1993) L-Ascorbic acid release from poly(2-hydroxyethyl methacrylate) hydrogels. Polym Bull 31:577–584CrossRefGoogle Scholar
  39. 39.
    Ulijn RV, Bib N, Jayawarna V, Thornton PD, Todd SJ, Mart R, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10(4):40–48CrossRefGoogle Scholar
  40. 40.
    Li H, Wang DQ, Liu BL, Gao LZ (2004) Synthesis of a novel gelatin-carbon nanotubes hybrid hydrogel. Colloids Surf B Biointerfaces 33:85–88CrossRefGoogle Scholar
  41. 41.
    Jimenez C, Bartrol J, de Rooij NF, Koudelka-Hep M (1997) Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal Chim Acta 351(1–3):169–176CrossRefGoogle Scholar
  42. 42.
    Arica MY, Bayramoglu G (2004) Polyethyleneimine-grafted poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible glucose oxidase immobilization. Biochem Eng J 20(1):73–77CrossRefGoogle Scholar
  43. 43.
    Arica MY, Bayramoglu G (2004) Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu(II) chleated poly(HEMA-co-GMA) reactive membranes. J Mol Catal B Enzym 27(4–6):255–265CrossRefGoogle Scholar
  44. 44.
    Doretti L, Gattolin P, Burla A, Ferrara D, Lora S, Palma G (1998) Covalently immobilized choline oxidase and cholinesterases on a methacrylate copolymer for disposable membrane biosensors. Appl Biochem Biotechnol 74(1):1–12CrossRefGoogle Scholar
  45. 45.
    Schulz B, Riedel A, Abel PU (1999) Influence of polymerization parameters and entrapment in poly(hydroxyethyl methacrylate) on activity and stability of GOD. J Mol Catal B Enzym 7(1–4):85–91CrossRefGoogle Scholar
  46. 46.
    Sheppard NF Jr, Lesho MJ, McNally P, Francomacaro AS (1995) Microfabricated conductimetric pH sensor. Sens Actuators B Chem 28(2):95–102CrossRefGoogle Scholar
  47. 47.
    Li L, Walt DR (1995) Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal Chem 67(20):3746–3752CrossRefGoogle Scholar
  48. 48.
    Thornton P, McConnell G, Ulijn RV (2005) Enzyme-responsive polymer hydrogel beads. Chem Commun 47:5913–5915CrossRefGoogle Scholar
  49. 49.
    Ulijn RV (2006) Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16:2217–2225CrossRefGoogle Scholar
  50. 50.
    Pellissier M, Zigah D, Barrière F, Hapiot P (2008) Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces. Langmuir 24(16):9089–9095CrossRefGoogle Scholar
  51. 51.
    Pekel N, Salih B, Guven O (2005) Enhancement of stability of glucose oxidase by immobilization onto metal ion-chelated poly (N-vinyl imidazole) hydrogels. J Biomater Sci Polym Ed 16(2):253–266CrossRefGoogle Scholar
  52. 52.
    Kim D-N, Lee W, Koh W-G (2008) Micropatterning of proteins on the surface of three-dimensional poly(ethylene glycol) hydrogel microstructures. Anal Chim Acta 609(1):59–65CrossRefGoogle Scholar
  53. 53.
    Soto C, Patterson C, Charles P, Martin B, Spector M (2005) Immobilization and hybridization of DNA in a sugar polyacrylate hydrogel. Biotechnol Bioeng 92(7):934–942CrossRefGoogle Scholar
  54. 54.
    Rubina AY, Pankov SV, Dementieva EI, Penkov DN, Butygin AV, Vasiliskov VA, Chudinov AV, Mikheikin AL, Mikhailovich VM, Mirzabekov AD (2004) Hydrogel drop microchips with immobilized DNA: properties and methods for large-scale production. Anal Biochem 325(1):92–106CrossRefGoogle Scholar
  55. 55.
    Luo Y, Kirker KR, Prestwich GD (2000) Crosslinked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69(1):169–184CrossRefGoogle Scholar
  56. 56.
    Poon YF, Cao Y, Zhu Y, Judeh ZM, Chan-Park MB (2009) Addition of beta-malic acid-containing poly(ethylene glycol) dimethacrylate to from biodegradable and biocompatible hydrogels. Biomacromolecules 10(8):2043–2052CrossRefGoogle Scholar
  57. 57.
    Peppas NA, Sahlin JJ (1996) Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17(16):1553–1561CrossRefGoogle Scholar
  58. 58.
    Kyritsis A, Pissis P, Grammatikakis J (1995) Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J Polym Sci B Polym Phys 33(12):1737–1750CrossRefGoogle Scholar
  59. 59.
    Pishko MV, Revzin A, Simonian AL (2002) Mass transfer in amperometric biosensors based on nanocomposite thin films of redox polymers and oxidoreductases. Sensors 2(3):79–90CrossRefGoogle Scholar
  60. 60.
    Abraham S, Brahim S, Ishihara K, Guiseppi-Elie A (2005) Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26:4767–4778CrossRefGoogle Scholar
  61. 61.
    Kabra B, Gehrke S, Hwang S, Ritschel W (1991) Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water. J Appl Polym Sci 42(9):2409–2416CrossRefGoogle Scholar
  62. 62.
    Alfrey T Jr, Gurnee E, Lloyd W (1966) Diffusion in glassy polymers. J Polym Sci C 12(1):249–261CrossRefGoogle Scholar
  63. 63.
    Mack E, Okano T, Kim S, Peppas N (1988) Hydrogels in medicine and pharmacy polymers, vol II. CRC Press, Boca RatonGoogle Scholar
  64. 64.
    Elvira C, Mano J, San Román J, Reis R (2002) Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23(9):1955–1966CrossRefGoogle Scholar
  65. 65.
    Flory P, Rehner J (1943) Statistical mechanics of crosslinked polymer networks II. J Phys Chem 11:521–526CrossRefGoogle Scholar
  66. 66.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2003) Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(Trimethoxy-silyl) propyl methacrylate. Biomacromolecules 4(5):1224–1231CrossRefGoogle Scholar
  67. 67.
    Gayet J, Fortier G (1996) High water content BSA-PEG hydrogel for controlled release device: evaluation of the drug release properties. J Control Release 38(2–3):177–184CrossRefGoogle Scholar
  68. 68.
    Falk B, Garramone S, Shivkumar S (2004) Diffusion coefficient of paracetamol in a chitosan hydrogel. Mater Lett 58(26):3261–3265CrossRefGoogle Scholar
  69. 69.
    Luo Y, Shoichet MS (2004) Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules 5(6):2315–2323CrossRefGoogle Scholar
  70. 70.
    Cao X, Shoichet MS (2002) Photoimmobilization of biomolecules within a 3-dimensional hydrogel matrix. J Biomater Sci Polym Ed 13(6):623–636CrossRefGoogle Scholar
  71. 71.
    Spargo BJ, Cliff RO, Rollwagen FM, Rudolph AS (1995) Controlled release of transforming growth factor-Beta from lipid-based microcylinders. J Microencapsul 12(3):247–254CrossRefGoogle Scholar
  72. 72.
    Fine T, Leskinen P, Isobe T, Shiraishi H, Morita M, Marks RS, Virta M (2006) Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosens Bioelectron 21(12):2263–2269CrossRefGoogle Scholar
  73. 73.
    Braschler T, Johann R, Heule M, Metref L, Renaud P (2005) Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. Lab Chip 5(5):553–559CrossRefGoogle Scholar
  74. 74.
    Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24(22):4023–4029CrossRefGoogle Scholar
  75. 75.
    O’Connor SM, Andreadis JD, Shaffer KM, Ma W, Pancrazio JJ, Stenger DA (2000) Immobilization of neural cells in three-dimensional matrices for biosensor applications. Biosens Bioelectron 14(10–11):871–881CrossRefGoogle Scholar
  76. 76.
    Jean-Francois J, D’Urso EM, Fortier G (1997) Immobilization of L-asparaginase into a biocompatible poly(ethylene glycol)-albumin hydrogel: evaluation of performance in vivo. Biotechnol Appl Biochem 26(3):203–212Google Scholar
  77. 77.
    Park K, Shalaby W, Park H (1993) Biodegradable hydrogels for drug delivery. Technomic Publishing Co., BaselGoogle Scholar
  78. 78.
    Klomp G, Hashiguchi H, Ursell P, Takeda Y, Taguchi T, Dobelle W (1983) Macroporous hydrogel membranes for a hybrid artificial pancreas. II. Biocompatibility. J Biomed Mater Res 17(5):865–871CrossRefGoogle Scholar
  79. 79.
    Guiseppi-Elie A, Brahim S, Narinesingh D (2002) A chemically synthesized artificial pancreas: release of insulin from glucose–responsive hydrogels. Adv Mater 14(10):743–746CrossRefGoogle Scholar
  80. 80.
    Gong JP, Kawakami I, Sergeyev VG, Osada Y (1991) Electroconductive organogel. 3. Preparation and properties of a charge-transfer complex gel in an organic solvent. Macromolecules 24:5246–5250CrossRefGoogle Scholar
  81. 81.
    Dispenza C, Fiandaca G, Presti CL, Piazza S, Spadaro G (2007) Electrical properties of gamma-crosslinked hydrogels incorporating organic conducting polymers. Radiat Phys Chem 76(8–9):1371–1375CrossRefGoogle Scholar
  82. 82.
    Moschou E, Madou MJ, Bachas LG, Daunert S (2006) Voltage-switchable artificial muscles actuating at near neutral pH. Sens Actuators B Chem 115(1):379–383CrossRefGoogle Scholar
  83. 83.
    Kumar S, Gangopadhyay R (2005) Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly(2-acrylamido-2-methyl propanesulphonic acid). Polymer 46(9):2993–3000CrossRefGoogle Scholar
  84. 84.
    Nikpour M, Chaouk H, Mau A, Chung DJ, Wallace G (1999) Porous conducting membranes based on polypyrrole-PMMA composites. Synth Met 99(2):121–126CrossRefGoogle Scholar
  85. 85.
    Koul S, Chandra R, Dhawan SK (2001) Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sens Actuators B Chem 75(3):151–159CrossRefGoogle Scholar
  86. 86.
    Park YH, Park SB (2002) Preparation and electroactivity of poly(methylmethacrylate-co-pyrrolylmethylstyrene)-g-polypyrrole. Synth Met 128(2):229–234CrossRefGoogle Scholar
  87. 87.
    Brahim S, Maharajh D, Narinesingh D, Guiseppi-Elie A (2002) Characterization of a galactose biosensor using a novel polypyrrole-hydrogel composite membrane. Anal Lett 35(5):797–812CrossRefGoogle Scholar
  88. 88.
    Galvin ME, Wnek GE (1985) Characterization of polyacetylene/low density polyethylene composites prepared by in situ polymerization. J Polym Sci Polym Chem Ed 21(9):2727–2737CrossRefGoogle Scholar
  89. 89.
    Galvin ME, Wnek GE (1985) Towards the synthesis of electroactive block copolymers via anionic-to-Ziegler-Natta transformation reactions. Polym Bull 13(2):109–114Google Scholar
  90. 90.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2003) Synthesis and hydration properties of pH-sensitive, p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. Biomacromolecules 4(3):497–503CrossRefGoogle Scholar
  91. 91.
    Lee W, Lin W (2002) Preparation and gel properties of poly[hydroxyethylmethacrylate-co-poly(ethylene ­glycol) methacrylate] copolymeric hydrogels by photopolymerization. J Polym Res 9(1):23–29CrossRefGoogle Scholar
  92. 92.
    Sun Y, Gombotz W, Hoffman A (1986) Synthesis and characterization of non-fouling polymer surfaces: I. Radiation grafting of hydroxyethyl methacrylate and polyethylene glycol methacrylate onto silastic film.J Bioact Compat Polym 1(3):316CrossRefGoogle Scholar
  93. 93.
    Brahim S, Guiseppi-Elie A (2005) Electroconductive hydrogels: electrical and electrochemical properties of polypyrrole-poly(HEMA) composites. Electroanalysis 17(7):556–570CrossRefGoogle Scholar
  94. 94.
    Justin G, Abdur Rahman AR, Guisepp-Elie A (2009) Bioactive hydrogel layers on microdisc electrode arrays: cyclic voltammetry experiments and simulations. Electroanalysis 21(10):1125–1134CrossRefGoogle Scholar
  95. 95.
    Justin G, Finley S, Abdur Rahman AR, Guiseppi-Elie A (2009) Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomed Microdevices 11(1):103–115CrossRefGoogle Scholar
  96. 96.
    Abdur Rahman AR, Justin G, Guisepp-Elie A (2009) Bioactive hydrogel layers on microdisc electrode arrays: ­impedimetric characterization and equivalent circuit modeling. Electroanalysis 21(10):1125–1134CrossRefGoogle Scholar
  97. 97.
    Abdur Rahman AR, Justin G, Guiseppi-Elie A (2009) Towards an implantable biochip for glucose and lactate monitoring using micro-disc electrode arrays (MDEAs). Biomed Microdevices 11(1):75–85CrossRefGoogle Scholar
  98. 98.
    Guiseppi-Elie A (1998) Chemical and biological sensor devices having electroactive polymer thin films attached to microfabricated devices and possessing immobilized indicator moieties. US Patent 5,766,934, 16 June 1998Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ann M. Wilson
    • 1
  • Gusphyl Justin
    • 2
  • Anthony Guiseppi-Elie
    • 1
    • 2
  1. 1.ABTECH Scientific, Inc., Biotechnology Research ParkRichmondUSA
  2. 2.Center for Bioelectronics, Biosensors and Biochips (C3B)Clemson University Advanced Materials CenterAndersonUSA

Personalised recommendations