Composite Hydrogels for Scaffold Design, Tissue Engineering, and Prostheses

  • V. Guarino
  • A. Gloria
  • R. De Santis
  • L. Ambrosio


Hydrogels have been successfully used in several biomedical applications, such as controlled drug release and micro-patterning. More recently, the ability to engineer composite hydrogels has generated new opportunities in addressing challenges in tissue engineering as well as in tissue function restoration via prostheses. Indeed, the knowledge of biocompatible materials and preparation technologies may be efficaciously used in synthesizing biocompatible hydrogels to develop state-of-the-art hydrogel-based devices for tissue regeneration and reconstruction. Important details with respect to the design of the materials adopted and with respect to specific tissues, such as tendons and ligaments, intervertebral discs, bone, menisci, and cartilage will be discussed.


Anterior Cruciate Ligament Tissue Engineering Hyaluronic Acid Anterior Cruciate Ligament Reconstruction Intervertebral Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology 13:565–576CrossRefGoogle Scholar
  2. 2.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRefGoogle Scholar
  3. 3.
    Woerly S (1997) Porous hydrogels for neural tissue engineering. Porous Mater Tissue Eng 250:53–68Google Scholar
  4. 4.
    Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10010CrossRefGoogle Scholar
  5. 5.
    Shu XZ, Ahmad S, Liu YC et al (2006) Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A 79A:902CrossRefGoogle Scholar
  6. 6.
    Matthew HW, Salley SO, Peterson WD et al (1993) Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol Prog 9:510–519CrossRefGoogle Scholar
  7. 7.
    Kopecek J, Yang J (2007) Hydrogels as smart materials. Polym Int 56:1078–1098CrossRefGoogle Scholar
  8. 8.
    Campoccia D, Doherty P, Radice M et al (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127CrossRefGoogle Scholar
  9. 9.
    Wichterle O, Lim D (1960) Hydrophilic gels in biologic use. Nature 185:117CrossRefGoogle Scholar
  10. 10.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12CrossRefGoogle Scholar
  11. 11.
    Alblas FNE, De Wijn JR J et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925CrossRefGoogle Scholar
  12. 12.
    Ambrosio L, Netti PA, Iannace S et al (1996) Composite hydrogels for intervertebral disc prostheses. J Mater Sci Mater Med 7:251–254CrossRefGoogle Scholar
  13. 13.
    Netti PA, Shelton JC, Revell PA et al (1993) Hydrogels as an interface between bone and an implant. Biomaterials 14(14):1098–1104CrossRefGoogle Scholar
  14. 14.
    Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  15. 15.
    Netti PA, D’Amore A, Ronca D et al (1996) Structure-mechanical properties relationship of natural tendons and ligaments. J Mater Sci Mater Med 7:525–530CrossRefGoogle Scholar
  16. 16.
    De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fibre reinforced polymers as connective tissue replacement. Comp Sci Technol 64:861–871CrossRefGoogle Scholar
  17. 17.
    Iannace S, Sabatini G, Ambrosio L et al (1995) Mechanical behaviour of composite artificial tendons and ligaments. Biomaterials 16(9):675–680CrossRefGoogle Scholar
  18. 18.
    Causa F, Sarracino F, De Santis R et al (2006) Basic structural parameters for the design of composite structures as ligament augmentation devices. J Appl Biomater Biomech 4:21–30Google Scholar
  19. 19.
    Noth U, Schupp K, Heymer A et al (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7(5):447–455CrossRefGoogle Scholar
  20. 20.
    Calve S, Dennis R, Kosnik P et al (2004) Engineering of functional tendon. Tissue Eng 10(5/6):755–761CrossRefGoogle Scholar
  21. 21.
    Gentleman E, Livesay G, Dee K et al (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726–736CrossRefGoogle Scholar
  22. 22.
    Ouyang H, Goh J, Thambyah A et al (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Eng 9(3):431–439CrossRefGoogle Scholar
  23. 23.
    Cristino S, Grassi F, Toneguzzi S et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11 based prototype ligament scaffold. J Biomed Mater Res 73A(3):275–283CrossRefGoogle Scholar
  24. 24.
    Funakoshi T, Majima T, Iwasaki N et al (2005) Novel chitosan-based hyaluronan hybrid polymer fibres as a scaffold in ligament tissue engineering. J Biomed Mater Res 74A(3):338–346CrossRefGoogle Scholar
  25. 25.
    McPherson GK, Mendenhall HV, Gibbons DF et al (1985) Experimental mechanical and histological evaluation of the Kennedy ligament augmentation device. Clin Orthop 196:186–195Google Scholar
  26. 26.
    Olson EJ, Kang JD, Fu FH et al (1988) The biochemical and histological effects of artificial ligament wear particles: in vitro and in vivo studies. Am J Sports Med 16:558–570CrossRefGoogle Scholar
  27. 27.
    Ambrosio L, De Santis R, Nicolais L (1998) Composite hydrogels for implants. Proc Inst Mech Eng 212(Part H):93–99Google Scholar
  28. 28.
    Arnoczky SP, Matyas JR, Buckwalter JA et al (1963) Anatomy of the anterior cruciate ligament. In: Jackson DW (ed) The anterior cruciate ligament. Raven Press, New York, pp 5–23Google Scholar
  29. 29.
    Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Exp Rev Med Dev 4(3):406–418CrossRefGoogle Scholar
  30. 30.
    Ge Z, Yang F, Goh JCH et al (2006) Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res 77A:639–652CrossRefGoogle Scholar
  31. 31.
    Gershon B, Cohn D, Marom G (1990) Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses. Biomaterials 11:548–552CrossRefGoogle Scholar
  32. 32.
    Cassidy JJ, Hiltner A, Baer A (1990) The response of the hierarchical structure of the intervertebral disc to uniaxial compression. J Mater Sci Mat Med 1:69–80CrossRefGoogle Scholar
  33. 33.
    Hukins DWL (2005) Tissue engineering: a live disc. Nat Mater 4(12):881–882CrossRefGoogle Scholar
  34. 34.
    Bao Q, McCullen GM, Higham PA et al (1996) The artificial disc: theory, design and materials. Biomaterials 17:1157–1167CrossRefGoogle Scholar
  35. 35.
    Cassidy JJ, Hiltner A, Baer A (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23(1):75–88CrossRefGoogle Scholar
  36. 36.
    Shikinami Y, Kotani Y, Cunningham BW et al (2004) A biomimetic artificial disc with improved mechanical properties compared to biological intervertebral discs. Adv Funct Mater 14:1039–1046CrossRefGoogle Scholar
  37. 37.
    Gloria A, Causa F, De Santis R et al (2007) Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. J Mater Sci Mater Med 18:2159–2165CrossRefGoogle Scholar
  38. 38.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefGoogle Scholar
  39. 39.
    Davis PA, Huang SJ, Ambrosio L, Ronca D, Nicolais L (1991) A biodegradable composite artificial tendon. J Mater Sci Mater Med 3:359–364CrossRefGoogle Scholar
  40. 40.
    Leach JB, Bivens KA, Patrick CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82:578–589CrossRefGoogle Scholar
  41. 41.
    Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092CrossRefGoogle Scholar
  42. 42.
    Ciapetti G, Ambrosio L, Marletta G et al (2006) Human bone marrow stromal cells: in vitro expansion and differentiation for bone engineering. Biomaterials 27:6150–6160CrossRefGoogle Scholar
  43. 43.
    Savarino L, Baldini N, Greco M et al (2007) The performance of poly-ε-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109CrossRefGoogle Scholar
  44. 44.
    Mikos AG, Sarakinos G, Leite SM et al (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330CrossRefGoogle Scholar
  45. 45.
    Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation e and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRefGoogle Scholar
  46. 46.
    Mooney DJ, Mikos AG (1999) Growing new organs. Sci Am 280:60–65CrossRefGoogle Scholar
  47. 47.
    Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783–1790CrossRefGoogle Scholar
  48. 48.
    Leong KF, Cheah CM, Chua CK (2003) Solid free-form fabrication of 3D scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378CrossRefGoogle Scholar
  49. 49.
    Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524CrossRefGoogle Scholar
  50. 50.
    Guarino V, Causa F, Salerno A et al (2008) Design and manufacture of microporous polymeric materials with hierarchical complex structure for biomedical application. Mater Sci Technol 24(9):1111–1117CrossRefGoogle Scholar
  51. 51.
    Lum L, Elisseeff J (2003) Injectable hydrogels for cartilage tissue engineering. In: Ashammakhi N, Ferrettivol P (eds) Topics in tissue engineering, vol 1, pp1–25, [ebook]
  52. 52.
    Elisseeff J, Puleo C, Yang F et al (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res 8:150–161CrossRefGoogle Scholar
  53. 53.
    Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014CrossRefGoogle Scholar
  54. 54.
    Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099CrossRefGoogle Scholar
  55. 55.
    Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release 101:69CrossRefGoogle Scholar
  56. 56.
    Roberts A, Wyslouzil BE, Bonassar L (2005) Aerosol delivery of mammalian cells for tissue engineering. Biotechnol Bioeng 91:801CrossRefGoogle Scholar
  57. 57.
    Nahmias Y, Arneja A, Tower TT et al (2005) Cell patterning on biological gels via cell spraying through a mask. Tissue Eng 11:701CrossRefGoogle Scholar
  58. 58.
    Spitzer RS, Perka C, Lindenhayn K et al (2002) Matrix engineering for osteogenic differentiation of rabbit periosteal cells using alpha-tricalcium phosphate particles in a three-dimensional fibrin culture. J Biomed Mater Res 59:690CrossRefGoogle Scholar
  59. 59.
    Xu XL, Lou J, Tang T et al (2005) Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater 75:289Google Scholar
  60. 60.
    Guarino V, Causa F, Netti PA et al (2008) The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 86B:548CrossRefGoogle Scholar
  61. 61.
    Santavirta S, Konttinen YT, Saito T et al (1990) Immune response to polyglycolic acid implants. J Bone Joint Surg Br 72:597–600Google Scholar
  62. 62.
    Turner NJ, Kielty CM, Walker MG et al (2004) A novel hyaluronan-based biomaterial (HYAFF 11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 25:5955–5964CrossRefGoogle Scholar
  63. 63.
    Grigolo B, Roseti L, Fiorini M et al (2001) Transplantation of chondrocytes seeded on a hyaluronan derivative (HYAFF 11) into cartilage defects in rabbits. Biomaterials 22:2417–2424CrossRefGoogle Scholar
  64. 64.
    Solchaga LA, Dennis JE, Goldberg VM et al (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213CrossRefGoogle Scholar
  65. 65.
    Solchaga LA, Gao J, Dennis JE et al (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347CrossRefGoogle Scholar
  66. 66.
    Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34:147–230CrossRefGoogle Scholar
  67. 67.
    Rezwan K, Chen QZ, Blaker JJ et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefGoogle Scholar
  68. 68.
    Chiari C, Koller U, Dorotka R et al (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14:1056–1065CrossRefGoogle Scholar
  69. 69.
    Kon E, Chiari C, Marcacci M et al (2008) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A 14(6):1067–1080CrossRefGoogle Scholar
  70. 70.
    Veth RP, Jansen HW, Leenslag JW et al (1986) Experimental meniscal lesions reconstructed with a carbon fibre-polyurethane-poly(l-lactide) graft. Clin Orthop Relat Res 202:286–293Google Scholar
  71. 71.
    Cook JL, Fox DB, Malaviya P et al (2005) Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32–42CrossRefGoogle Scholar
  72. 72.
    Tienen TG, Heijkants RG, De Groot JH et al (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76:389–396Google Scholar
  73. 73.
    Walsh CJ, Goodman D, Caplan AI et al (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5:327–337CrossRefGoogle Scholar
  74. 74.
    Martinek V, Ueblacker P, Braun K et al (2007) Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126:228–234CrossRefGoogle Scholar
  75. 75.
    Weinand C, Peretti GM, Adams SBJ et al (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34:1779–1789CrossRefGoogle Scholar
  76. 76.
    Puelacher WC, Mooney D, Langer R et al (1994) Design of nasoseptal cartilage replacements synthesised from biodegradable polymers and chondrocytes. Biomaterials 15:774–778CrossRefGoogle Scholar
  77. 77.
    Buschmann MD, Gluzband YA, Grodzinsky AJ et al (1991) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose gel culture. J Cell Sci 108:1497–1508Google Scholar
  78. 78.
    Butnariu-Ephrat M, Robinson D, Mendes DG et al (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop Relat Res 330:234–243CrossRefGoogle Scholar
  79. 79.
    Homming GN, Buma P, Koot HWJ et al (1993) Chondrocyte behaviour in fibrin glue in vitro. Acta Orthop Scand 64:441–445CrossRefGoogle Scholar
  80. 80.
    Wakitani S, Kimura T, Hirooka A et al (1989) Repair of articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg 71B:74–80Google Scholar
  81. 81.
    Grandolfo P, D’andrea P, Paoletti M et al (1993) Culture and differentiation of chondrocytes entrapped in alginate beads. Calcif Tissue Int 52:42–48CrossRefGoogle Scholar
  82. 82.
    Lima EG, Mauck RL, Han SH et al (2004) Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41(3–4):577–590Google Scholar
  83. 83.
    Shimko DA, Shimko VF, Sander EA et al (2005) Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater 73(2):315–324Google Scholar
  84. 84.
    Mow V, Holmes M, Lai W (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394CrossRefGoogle Scholar
  85. 85.
    Sander EA, Nauman EA (2003) Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit Rev Biomed Eng 31(1–2):1–26CrossRefGoogle Scholar
  86. 86.
    Hui PW, Leung PC, Sher A (1996) Fluid conductance of cancellous bone graft as a predictor for graft–host interface healing. J Biomech 29(1):123–132CrossRefGoogle Scholar
  87. 87.
    Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46:4676–4685CrossRefGoogle Scholar
  88. 88.
    Ulbrich K, Strohalm J, Kopeček J (1982) Polymers containing enzymatically degradable bonds. 6. Hydrophilic gels cleavable by chymotrypsin. Biomaterials 3:150–154CrossRefGoogle Scholar
  89. 89.
    Wang C, Kopeček J, Stewart RJ (2001) Hybrid hydrogels crosslinked by genetically engineered coiled-coil block proteins. Biomacromolecules 2:912–920CrossRefGoogle Scholar
  90. 90.
    Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polymer Gels Networks 4:111–127CrossRefGoogle Scholar
  91. 91.
    De Jong SJ, De Smedt SC, Wahls MWC, Demeester J (2000) Kettenes-van den Bosch JJ, Hennink WE. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRefGoogle Scholar
  92. 92.
    Miyata T, Asami T, Uragami T (1999) A reversibly antigen-responsive hydrogels. Nature 399:766–769CrossRefGoogle Scholar
  93. 93.
    Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6:2927–2929CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • V. Guarino
    • 1
  • A. Gloria
    • 1
  • R. De Santis
    • 1
  • L. Ambrosio
    • 1
  1. 1.Institute of Composite and Biomedical MaterialsNational Research CouncilNaplesItaly

Personalised recommendations