Epileptic EEG: A Comprehensive Study of Nonlinear Behavior

  • Moayed Daneshyari
  • L. Lily Kamkar
  • Matin Daneshyari
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 680)

Abstract

In this study, the nonlinear properties of the electroencephalograph (EEG) signals are investigated by comparing two sets of EEG, one set for epileptic and another set for healthy brain activities. Adopting measures of nonlinear theory such as Lyapunov exponent, correlation dimension, Hurst exponent, fractal dimension, and Kolmogorov entropy, the chaotic behavior of these two sets is quantitatively computed. The statistics for the two groups of all measures demonstrate the differences between the normal healthy group and epileptic one. The statistical results along with phase-space diagram verify that brain under epileptic seizures possess limited trajectory in the state space than in healthy normal state, consequently behaves less chaotically compared to normal condition.

Keywords

EEG Chaos Brain activity Epilepsy Nonlinearity 

References

  1. 1.
    Babloyantz A, Salazar JM, Nicolis C (1985) Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett A 111:152–156.CrossRefGoogle Scholar
  2. 2.
    Freeman WJ (1991) The physiology of perception. Sci Am 264(2):78–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Freeman WJ (1992) Tutorial on neurobiology: From single neurons to brain chaos. Int J Bifurc Chaos 2:451–482.CrossRefGoogle Scholar
  4. 4.
    Guevara MR, Glass L, Mackey MC, Shrier A (1983) Chaos in neurobiology. IEEE Trans Syst Man Cybern 13:790–798.CrossRefGoogle Scholar
  5. 5.
    Aradi I, Barna G, Erdi P, Grobler T (1995) Chaos and learning in the olfactory bulb. Int J Intell Syst 10:89–117.CrossRefGoogle Scholar
  6. 6.
    Baird B (1986) Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb. Phys D 22:150–175.CrossRefGoogle Scholar
  7. 7.
    Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83:3513–3517.PubMedCrossRefGoogle Scholar
  8. 8.
    Iasemidis LD, Sackellares JC (1996) Chaos theory and epilepsy. Neuroscience 2:118–126.CrossRefGoogle Scholar
  9. 9.
    Birbaumer N, Lutzenberger W, Rau H, Braun C, Mayer-Kress G (1996) Perception of music and dimensional complexity of brain activity. Int J Bifurc Chaos 6:267–278.CrossRefGoogle Scholar
  10. 10.
    Stam CJ, van der Leij HE, Keunen RW, Tavy DL (1999) Nonlinear EEG changes in postanoxic encephalopathy. Theory Biosci 118:209–218.Google Scholar
  11. 11.
    Adeli H, Ghosh-dastidar S, Dadmehr N (2008) A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neurosci Lett 444:190–194.PubMedCrossRefGoogle Scholar
  12. 12.
    Wolf A, Swift JB, Swinney LH, Vastano JA (1985) Determining Lyapunov exponent from a time series. Phys D 16:285–317.CrossRefGoogle Scholar
  13. 13.
    Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349.CrossRefGoogle Scholar
  14. 14.
    Parker TS, Chua LO (1987) Chaos: A tutorial for engineers. Proceedings of the IEEE, Special Issue on Chaotic Systems, pp. 982–1008.Google Scholar
  15. 15.
    Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge.Google Scholar
  16. 16.
    Daneshyari M, Kamkar LL, Daneshyari M (2009) Extracting low-dimension nonlinearity in EEG of epilepsy. BIOCOMP 422–426.Google Scholar
  17. 17.
    Takens F (1981) Detecting strange attractors in turbulence. In: Dand DA, Young LS (eds), Dynamical systems and turbulence. Springer, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Moayed Daneshyari
    • 1
  • L. Lily Kamkar
  • Matin Daneshyari
  1. 1.Department of TechnologyElizabeth City State UniversityElizabeth CityUSA

Personalised recommendations