Towards Knowledge-Based Life Science Publication Repositories

  • Vít Nováček
  • Tudor Groza
  • Siegfried Handschuh
Part of the Annals of Information Systems book series (AOIS, volume 11)


Despite being a flourishing field, the contemporary online scientific publishing properly exploits mostly raw publication data (rather meaningless bags of words) and shallow meta-data (authors, keywords, citations, etc.) regarding search. The much needed economical mass exploitation of the knowledge implicitly contained in publication texts is still largely an uncharted territory. The way towards filling this gap leads through (1) extraction of asserted publication meta-data together with the knowledge implicitly present in the respective text; (2) integration, refinement and extension of the emergent content; (3) release of the processed content via a meaning-sensitive search&browse interface catering for services complementary to the current full-text search. This chapter addresses the scientific and engineering challenges related to the suggested approach and introduces a particular solution that tackles them – CORAAL, a prototype for knowledge-based life science publication search.


Ordered Weighted Average Ordered Weighted Average Operator Citation Context Ontology Learning Predicate Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the EU IST 6th framework’s project “Nepomuk” (FP6-027705) and the “Líon” and “Líon II” projects funded by Science Foundation Ireland under Grant No. SFI/02/CE1/I131, SFI/08/CE/ I1380, respectively. We would like to thank the employees of Masaryk Oncology Institute for their feedback and to Ioana Hulpus for her work on the former CORAAL user interface. Very special thanks goes to the people who have actively participated in the continuous prototype evaluation and testing, namely to (in alphabetical order) Doug Foxvog, Peter Gréll, MD, Miloš Holánek, MD, Matthias Samwald, Holger Stenzhorn and Jiří Vyskočil, MD. We also acknowledge the valuable comments from the anonymous reviewers who helped to improve the final shape of the chapter.


  1. 1.
    Bechhofer, S., Gangemi, A., Guarino, N., van Harmelen, F., Horrocks, I. Klein, M., Masolo, C., Oberle, D., Staab, S., Stuckenschmidt, H., Volz, R.: Tackling the ontology acquisition bottleneck: An experiment in ontology re-engineering (2003) Retrieved at, Apr’08. 13 Jul 2010
  2. 2.
    Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering. Advanced Information and Knowledge Processing. Springer, New York (2004)Google Scholar
  3. 3.
    Aberer, K., Cudré-Mauroux, P., Ouksel, A.M.: Emergent semantics principles and issues. In: Proceedings of Database Systems for Advanced Applications, 9th International Conference, DASFAA 2004, Jeju Island, Korea (2004)Google Scholar
  4. 4.
    Maedche, A., Staab, S.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. Springer, New York (2004) 173–190Google Scholar
  5. 5.
    Maedche, A.: Emergent semantics for ontologies. In: Emergent Semantics. IEEE Intelligent Systems. IEEE Press, NYC, USA (2002) 85–86Google Scholar
  6. 6.
    Ottens, K., Aussenac-Gilles, N., Gleizes, M.P., Camps, V.: Dynamic ontology coevolution from texts: Principles and case study. In: Proceedings of ESOE 2007 Workshop, CEUR-WS, Busan, Korea (2007) 70–83Google Scholar
  7. 7.
    Buitelaar, P., Cimiano, P.: Ontology Learning and Population: Bridging the Gap Between Text and Knowledge. IOS Press, Amsterdam, Netherlands (2008)Google Scholar
  8. 8.
    Haase, P., Völker, J.: Ontology learning and reasoning – dealing with uncertainty and inconsistency. In: Proceedings of the URSW2005 Workshop. (NOV 2005), Galway, Ireland 45–55Google Scholar
  9. 9.
    Hein, J., Hendler, J.: Dynamic ontologies on the web. In: Proceedings of AAAI 2000, AAAI Press, Menlo Park, California, USA (2000)Google Scholar
  10. 10.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Proceedings of ISWC’05. Volume 3792 of LNCS. Springer, New York (2005) 353–367Google Scholar
  11. 11.
    Straccia, U.: A fuzzy description logic for the semantic web. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence. Elsevier, Amsterdam (2006) 73–90CrossRefGoogle Scholar
  12. 12.
    Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: Proceedings of AAAI 2006, AAAI Press, Menlo Park, California, USA (2006)Google Scholar
  13. 13.
    Sheth, A., Ramakrishnan, C., Thomas, C.: Semantics for the semantic web: The implicit, the formal and the powerful. International Journal on SemanticWeb & Information Systems 1(1) (2005) 1–18CrossRefGoogle Scholar
  14. 14.
    Frith, C.: Making Up the Mind: How the Brain Creates Our Mental World. Blackwell, Oxford, UK (2007)Google Scholar
  15. 15.
    Gentner, D., Holyoak, K.J., Kokinov, B.K. (eds.): The Analogical Mind: Perspectives from Cognitive Science. MIT Press, Cambridge, MA (2001)Google Scholar
  16. 16.
    McGuinness, D.L.: Ontology-enhanced search for primary care medical literature. In: Proceedings of the Medical Concept Representation and Natural Language Processing Conference, Phoenix, Arizona, USA (1999) 16–19Google Scholar
  17. 17.
    Abasolo, J.M., Gómez, M.: M.: Melisa: An ontology-based agent for information retrieval in medicine. In: Proceedings of the First International Workshop on the Semantic Web (SemWeb2000), Lisbon, Portugal (2000) 73–82Google Scholar
  18. 18.
    Dietze, H., et al.: Gopubmed: Exploring pubmed with ontological background knowledge. In: Ontologies and Text Mining for Life Sciences, IBFI (2008)Google Scholar
  19. 19.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge, USA (2003)Google Scholar
  20. 20.
    Müller, H.M., Kenny, E.E., Sternberg, P.W.: Textpresso: An ontology-based information retrieval and extraction system for biological literature. PLoS Biology 2(11) (2004) 1984–1998Google Scholar
  21. 21.
    Groza, T., Handschuh, S., Moeller, K., Decker, S.: KonneXSALT: First steps towards a semantic claim federation infrastructure. In: The Semantic Web: Research and Applications (Proceedings of ESWC 2008), Springer, New York (2008) 80–94Google Scholar
  22. 22.
    Hulpus, I.: Design and implementation of a semantic claim federation infrastructure. Master’s Thesis, Technical University of Cluj-Napoca (2008)Google Scholar
  23. 23.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 5 (2001)Google Scholar
  24. 24.
    Zadeh, L.A.: Fuzzy sets. Journal of Information and Control 8 (1965) 338–353CrossRefGoogle Scholar
  25. 25.
    Ogden, C.K., Richards, I.A.: The Meaning of Meaning. Mariner Books (1989)Google Scholar
  26. 26.
    Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. (2004) Available at (Feb 2006): 13 Jul 2010
  27. 27.
    Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. In: Transactions on Fuzzy Systems. IEEE (2004)Google Scholar
  28. 28.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18 (1988) 183–190CrossRefGoogle Scholar
  29. 29.
    Greenwald, A.G.: Cognitive learning, cognitive response to persuasion, and attitude change. In: Psychological Foundations of Attitudes, Academic Press Inc., New York (1968) 147–169Google Scholar
  30. 30.
    Grimm, S., Motik, B.: Closed world reasoning in the semantic web through epistemic operators. In: Proceedings of the Workshop OWL – Experiences and Directions, CEUR-WS (2005)Google Scholar
  31. 31.
    Patel-Schneider, P.F., Horrocks, I.: Position paper: A comparison of two modelling paradigms in the semantic web. In: Proceedings of http://WWW2006, ACM Press, NYC, USA (2006) 3–12
  32. 32.
    Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29(12) (1986) 1213–1228CrossRefGoogle Scholar
  33. 33.
    Kokinov, B.N., Petrov, A.: Integrating memory and reasoning in analogy-making: The AMBR model. In: The Analogical Mind: Perspectives from Cognitive Science, MIT Press, Cambridge, MA (2001) 59–124Google Scholar
  34. 34.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5) (1999) 604–632Google Scholar
  35. 35.
    Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3) (1996) 73–83Google Scholar
  36. 36.
    Nováček, V.: Towards an efficient knowledge-based publication data exploitation: An oncological literature search scenario. Technical Report DERI-TR-2009-03-23, DERI, NUIG (2009) Available at 13 Jul 2010
  37. 37.
    Manola, F., Miller, E.: RDF Primer. (2004) Available at (November 2008): 13 Jul 2010
  38. 38.
    Groza, T., Möller, K., Handschuh, S., Trif, D., Decker, S.: SALT: Weaving the claim web. In: ISWC 2007, Busan, Korea (2007)Google Scholar
  39. 39.
    Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of ECAI 2000, IOS Press, Amsterdam, Netherlands (2000)Google Scholar
  40. 40.
    Blaschke, C., Andrade, M., Ouzounis, C., Valencia, A.: Automatic extraction of biological information from scientific text: Protein-protein interactions. In: Proc. Int Conf Intell Syst Mol Biol, Protein Design Group, CNB-CSIC, Madrid, Spain (1999) 60–67Google Scholar
  41. 41.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA (1998)Google Scholar
  42. 42.
    Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning taxonomic relations from heterogenous sources of evidence. In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam, Netherlands (2005) 59–73Google Scholar
  43. 43.
    Voelker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Proceedings of ESWC’07, Springer, New York (2007)Google Scholar
  44. 44.
    Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge, MA (2000)Google Scholar
  45. 45.
    Aisbett, J., Gibbon, G.: A general formulation of conceptual spaces as a meso level representation. Artificial Intelligence 133(1–2) (2001) 189–232Google Scholar
  46. 46.
    Smolensky, P., Legendre, G.: The Harmonic Mind: From Neural Computation to Optimality – Theoretic Grammar. MIT Press, Cambridge, MA (2006)Google Scholar
  47. 47.
    Sowa, J.F., Majumdar, A.K.: Analogical reasoning. In: Proceedings of ICCS’03. Springer, Berlin, Heidelberg (2003)Google Scholar
  48. 48.
    Sowa, J.F.: A dynamic theory of ontology. In: Proceedings of FOIS’06, IOS Press, Amsterdam, Netherlands (2006)Google Scholar
  49. 49.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. (2004) Available at (February 2006): 13 Jul 2010
  50. 50.
    ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf schema and a semantic extension involving the owl vocabulary. Journal of Web Semantics 3(2-3) (2005) 79–115Google Scholar
  51. 51.
    Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language: Profiles. Working draft, available at as of Dec 11 (2008). 13 Jul 2010
  52. 52.
    Noy, N., Rector, A.: Defining N-ary Relations on the Semantic Web (2006). Available at (June 2008): 13 Jul 2010
  53. 53.
    Laskey, K.J., Laskey, K.B., Costa, P.C.G., Kokar, M.M., Martin, T., Lukasiewicz, T.: Uncertainty Reasoning for the World Wide Web. (2008) W3C Incubator Group final report, available at as of Dec 11, 2008. 13 Jul 2010

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vít Nováček
    • 1
  • Tudor Groza
    • 1
  • Siegfried Handschuh
    • 1
  1. 1.Digital Enterprise Research Institute (DERI)National University of IrelandGalwayIreland

Personalised recommendations