Advertisement

Magnetic Resonance Spectroscopy of Pediatric Brain Tumors

  • Simrandip K. Gill
  • Ashok Panigrahy
  • Theodoros N. Arvanitis
  • Andrew C. Peet

Abstract

Magnetic resonance spectroscopy can provide noninvasive metabolite profiles of childhood brain tumors and these are highly characteristic for tumor type. This information is increasingly being used to provide a noninvasive diagnostic aid but since tumor pathologies differ in children to adults, child specific classifiers are required. Despite the strong dependence of the MRS metabolite profile on tumor type, some metabolites are also biomarkers of prognosis both within and across tumor groups. Some evidence is also emerging that MRS can also provide biomarkers of treatment response where prior to changes on conventional MRI.

Keywords

Brain Tumor Magnetic Resonance Spectroscopy Posterior Fossa Conventional Magnetic Resonance Imaging Pediatric Brain Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

CRUK and EPSRC Cancer Imaging Programme at the Children’s Cancer and Leukaemia Group (CCLG) in association with the MRC and Department of Health (England) (C7809/A10342).

References

  1. 1.
    Farmer JP, Montes JL, Freeman CR, Meagher-Villemure K, Bond MC, O’Gorman AM. Brainstem Gliomas. A 10-year institutional review. Pediatr Neurosurg. 2001;34(4):206–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Freeman CR, Farmer JP. Pediatric brain stem gliomas: a review. Int J Radiat Oncol Biol Phys. 1998;40(2):265–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Mandell LR, Kadota R, Freeman C, Douglass EC, Fontanesi J, Cohen ME, Kovnar E, Burger P, Sanford RA, Kepner J, Friedman H, Kun LE. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys. 1999;43(5):959–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Pan E, Prados M. Brainstem Gliomas. In: Gupta N, Haas-Kogen D, Banerjee A, editors. Pediatric CNS tumors, vol. 3. Berlin: Springer; 2004. p. 49–61.Google Scholar
  5. 5.
    Nelson Jr MD, Soni D, Baram TZ. Necrosis in pontine gliomas: radiation induced or natural history? Radiology. 1994;191(1):279–82.PubMedGoogle Scholar
  6. 6.
    Yoshimura J, Onda K, Tanaka R, Takahashi H. Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurol Med Chir (Tokyo). 2003;43(8):375–82. discussion 382.CrossRefGoogle Scholar
  7. 7.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.CrossRefPubMedGoogle Scholar
  8. 8.
    Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain tumors. Neurol Clin. 2007;25(4):867–90. vii.CrossRefPubMedGoogle Scholar
  9. 9.
    Sands SA, van Gorp WG, Finlay JL. Pilot neuropsychological findings from a treatment regimen consisting of intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. Childs Nerv Syst. 1998;14(10):587–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Dhall G, Grodman H, Ji L, Sands S, Gardner S, Dunkel IJ, McCowage GB, Diez B, Allen JC, Gopalan A, Cornelius AS, Termuhlen A, Abromowitch M, Sposto R, Finlay JL. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr Blood Cancer. 2008;50(6):1169–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Gardner SL, Asgharzadeh S, Green A, Horn B, McCowage G, Finlay J. Intensive induction chemotherapy followed by high dose chemotherapy with autologous hematopoietic progenitor cell rescue in young children newly diagnosed with central nervous system atypical teratoid rhabdoid tumors. Pediatr Blood Cancer. 2008;51(2):235–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Fangusaro J, Finlay J, Sposto R, Ji L, Saly M, Zacharoulis S, Asgharzadeh S, Abromowitch M, Olshefski R, Halpern S, Dubowy R, Comito M, Diez B, Kellie S, Hukin J, Rosenblum M, Dunkel I, Miller DC, Allen J, Gardner S. Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): report of the Head Start I and II experience. Pediatr Blood Cancer. 2008;50(2):312–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Zacharoulis S, Levy A, Chi SN, Gardner S, Rosenblum M, Miller DC, Dunkel I, Diez B, Sposto R, Ji L, Asgharzadeh S, Hukin J, Belasco J, Dubowy R, Kellie S, Termuhlen A, Finlay J. Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer. 2007;49(1):34–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA. Linear discriminant analysis of brain tumour (1)H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed. 2007;20(8):763–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang Y, Lisboa PJG, El-Deredy W. Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection. Stat Med. 2003;22(1):147–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Reynolds GM, Peet AC, Arvanitis TN. Generating prior probabilities for classifiers of brain tumours using belief networks. BMC Med Inform Decis Mak. 2007;7:27.CrossRefPubMedGoogle Scholar
  17. 17.
    Davies NP, Wilson M, Harris LM, Natarajan K, Lateef S, Macpherson L, Sgouros S, Grundy RG, Arvanitis TN, Peet AC. Identification and characterisation of childhood cerebellar tumours by in vivo proton MRS. NMR Biomed. 2008;21(8):908–18.CrossRefPubMedGoogle Scholar
  18. 18.
    Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem. 2003;90(3):525–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12(7):413–39.CrossRefPubMedGoogle Scholar
  20. 20.
    Hwang JH, Egnaczyk GF, Ballard E, Dunn RS, Holland SK, Ball Jr WS. Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. AJNR Am J Neuroradiol. 1998;19(3):535–40.PubMedGoogle Scholar
  21. 21.
    Panigrahy A, Krieger MD, Gonzalez-Gomez I, Liu X, McComb JG, Finlay JL, Nelson Jr MD, Gilles FH, Bluml S. Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol. 2006;27(3):560–72.PubMedGoogle Scholar
  22. 22.
    Negendank W, Sauter R. Intratumoral lipids in 1H MRS in vivo in brain tumors: experience of the Siemens cooperative clinical trial. Anticancer Res. 1996;16(3B):1533–8.PubMedGoogle Scholar
  23. 23.
    Barker PB. Fundamentals of MR spectroscopy. In: Gillard JH, Waldman AD, Barker PB, editors. Clinical MR neuroimaging—diffusion, perfusion and spectroscopy. Cambridge: Cambridge University Press; 2005. p. 15–20.Google Scholar
  24. 24.
    Panigrahy A, Nelson MJ, Blüml S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol. 2010;40(1):3–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Martínez-Bisbal MC, Celda B. Proton magnetic resonance spectroscopy imaging in the study of human brain cancer. Q J Nucl Med Mol Imaging. 2009;53(6):618–30.PubMedGoogle Scholar
  26. 26.
    McRobbie DW. It’s not just squiggles: in vivo spectroscopy. In: McRobbie DW, Moore EA, Graves MJ, Prince MR, editors. MRI From Picture to Proton; 2008. p 306–324.Google Scholar
  27. 27.
    Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC. A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn Reson Med. 2011;65(1):1–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12(2–3):141–52.PubMedGoogle Scholar
  30. 30.
    Wilson M, Davies NP, Sun Y, Natarajan K, Arvanitis TN, Kauppinen RA, Peet AC. A comparison between simulated and experimental basis sets for assessing short-TE in vivo 1H MRS data at 1.5 T. NMR Biomed. 2010;23(10):1117–26.CrossRefPubMedGoogle Scholar
  31. 31.
    Moreno-Torres A, Martinez-Perez I, Baquero M, Campistol J, Capdevila A, Arus C, Pujol J. Taurine detection by proton magnetic resonance spectroscopy in medulloblastoma: Contribution to noninvasive differential diagnosis with cerebellar astrocytomas. Neurosurgery. 2004;55:824–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Wilke M, Eidenschink A, Muller-Weihrich S, Auer DP. MR diffusion imaging and 1H spectroscopy in a child with medulloblastoma. A case report. Acta Radiol. 2001;42(1):39–42.PubMedGoogle Scholar
  33. 33.
    Tong Z, Yamaki T, Harada K, Houkin K. In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn Reson Imaging. 2004;22(5):735–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Kovanlikaya A, Panigrahy A, Krieger M, Gonzalez-Gomez I, Ghugre N, McComb J, Gilles F, Nelson M, Blüml S. Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology. 2005;236(3):1020–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Ashok P, Finlay JL, Nelson MD, Gilles FH, Gonzalez-Gomez I, Krieger MD, Bluml S. In vivo MR spectroscopy and diffusion MR imaging of the desmoplastic subtype of medulloblastoma. Dallas, Texas, US: Society of Neuro-Oncology; 2007.Google Scholar
  36. 36.
    Wang Z, Sutton LN, Cnaan A, Haselgrove JC, Rorke LB, Zhao H, Bilaniuk LT, Zimmerman RA. Proton MR spectroscopy of pediatric cerebellar tumors. AJNR Am J Neuroradiol. 1995;16(9):1821–33.PubMedGoogle Scholar
  37. 37.
    Harris LM, Davies NP, Macpherson L, Lateef S, Natarajan K, Brundler MA, Sgouros S, English MW, Arvanitis TN, Grundy RG, Peet AC. Magnetic resonance spectroscopy in the assessment of pilocytic astrocytomas. Eur J Cancer. 2008;44(17):2640–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, Hammond GD. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery. 1993;33(6):1026–9. discussion 1029–1030.CrossRefPubMedGoogle Scholar
  39. 39.
    Jallo GI, Biser-Rohrbaugh A, Freed D. Brainstem gliomas. Childs Nerv Syst. 2004;20(3):143–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Barkovich AJ, Krischer J, Kun LE, Packer R, Zimmerman RA, Freeman CR, Wara WM, Albright L, Allen JC, Hoffman HJ. Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg. 1990;16(2):73–83.CrossRefPubMedGoogle Scholar
  41. 41.
    Seymour ZA, Panigrahy A, Finlay JL, Nelson Jr MD, Bluml S. Citrate in pediatric CNS tumors? AJNR Am J Neuroradiol. 2008;29(5):1006–11.CrossRefPubMedGoogle Scholar
  42. 42.
    Panigrahy A, Nelson Jr MD, Finlay JL, Sposto R, Krieger MD, Gilles FH, Bluml S. Metabolism of diffuse intrinsic brainstem gliomas in children. Neuro Oncol. 2008;10(1):32–44.CrossRefPubMedGoogle Scholar
  43. 43.
    Harris LM, Davies N, MacPherson L, Wilson S, English M, Brundler M-A, Arvanitis TN, Grundy R, Peet AC. Short echo time single voxel 1H Magnetic Resonance Spectroscopy in the diagnosis and characterisation of pineal region tumours. Pediatric Blood Cancer. 2011;57(6):972–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Brown WD, Gilles FH, Tavare CJ, Rorke LB, Davis RL, Adelman L, Hedley-Whyte ET, Leviton A. Prognostic limitations of the Daumas-Duport grading scheme in childhood supratentorial astroglial tumors. J Neuropathol Exp Neurol. 1998;57(11):1035–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Gilles FH, Leviton A, Tavare CJ, Adelman L, Rorke LB, Sobel EL, Hedley-Whyte ET, Davis RL. Definitive classes of childhood supratentorial neuroglial tumors. The childhood brain tumor consortium. Pediatr Dev Pathol. 2000;3(2):126–39.CrossRefPubMedGoogle Scholar
  46. 46.
    Hockel M, Schlenger K, Mitze M, Schaffer U, Vaupel P. Hypoxia and radiation response in human tumors. Semin Radiat Oncol. 1996;6(1):3–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56(19):4509–15.PubMedGoogle Scholar
  48. 48.
    Sutherland RM, Ausserer WA, Murphy BJ, Laderoute KR. Tumor hypoxia and heterogeneity: challenges and opportunities for the future. Semin Radiat Oncol. 1996;6(1):59–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–22.CrossRefPubMedGoogle Scholar
  50. 50.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6(6):553–63.PubMedGoogle Scholar
  51. 51.
    Peet AC, Davies NP, Ridley L, Brundler MA, Kombogiorgas D, Lateef S, Natarajan K, Sgouros S, Macpherson L, Grundy RG. Magnetic resonance spectroscopy suggests key differences in the metastatic behaviour of medulloblastoma. Eur J Cancer. 2007;43(6):1037–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, Kocak M, Dalton J, Zambetti GP, Ellison DW, Kun LE, Gajjar A, Gilbertson RJ, Fuller CE. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol. 2007;25(6):682–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Castillo M, Smith JK, Kwock L. Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR Am J Neuroradiol. 2000;21(9):1645–9.PubMedGoogle Scholar
  54. 54.
    Tzika AA, Vigneron DB, Dunn RS, Nelson SJ, Ball Jr WS. Intracranial tumors in children: small single-voxel proton MR spectroscopy using short- and long-echo sequences. Neuroradiology. 1996;38(3):254–63.CrossRefPubMedGoogle Scholar
  55. 55.
    Negendank WG. Studies of human tumors by MRS: a review. NMR Biomed. 1992;5:303–24.CrossRefPubMedGoogle Scholar
  56. 56.
    Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, Heerschap A, Kamada K, Lee BC, Mengeot MM, Moser E, Padavic-Shaller KA, Sanders JA, Spraggins TA, Stillman AE, Terwey B, Vogl TJ, Wicklow K, Zimmerman RA. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg. 1996;84(3):449–58.CrossRefPubMedGoogle Scholar
  57. 57.
    Nelson SJ, Vigneron DB, Dillon WP. Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed. 1999;12:123–38.CrossRefPubMedGoogle Scholar
  58. 58.
    Sijens PE, Knopp MV, Brunetti A, Wicklow K, Alfano B, Bachert P, Sanders JA, Stillman AE, Kett H, Sauter R, et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med. 1995;33(6):818–26.CrossRefPubMedGoogle Scholar
  59. 59.
    Taylor JS, Ogg RJ, Langston JW. Proton MR spectroscopy of pediatric brain tumors. Neuroimaging Clin N Am. 1998;8(4):753–79.PubMedGoogle Scholar
  60. 60.
    Taylor JS, Langston JW, Reddick WE, Kingsley PB, Ogg RJ, Pui MH, Kun LE, Jenkins JJ, Chen G, Ochs JJ, Sanford RA, Heideman RL. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys. 1996;36(5):1251–61.CrossRefPubMedGoogle Scholar
  61. 61.
    Shimizu H, Kumabe T, Tominaga T, Kayama T, Hara K, Ono Y, Sato K, Arai N, Fujiwara S, Yoshimoto T. Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR Am J Neuroradiol. 1996;17:737–47.PubMedGoogle Scholar
  62. 62.
    Chang YW, Yoon HK, Shin HJ, Roh HG, Cho JM. MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy. Pediatr Radiol. 2003;33(12):836–42.CrossRefPubMedGoogle Scholar
  63. 63.
    Blüml S, Panigrahy A, Laskov M, Dhall G, Krieger MD, Nelson Jr MD, Finlay JL, Gilles FH. Elevated citrate in pediatric astrocytomas with malignant progression. Neuro-Oncol. 2011;12(10):1107–17.CrossRefGoogle Scholar
  64. 64.
    Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7(3):241–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Porto L, Kieslich M, Franz K, Lehrbecher T, Vlaho S, Pilatus U, Hattingen E. Spectroscopy of untreated pilocytic astrocytomas: do children and adults share some metabolic features in addition to their morphologic similarities? Childs Nerv Syst. 2010;26(6):801–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Davies NP, Wilson M, Natarajan K, Sun Y, Macpherson L, Brundler MA, Arvanitis TN, Grundy RG, Peet AC. Non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo (1)H MRS at 1.5 Tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR. NMR Biomed. 2009;23(1):80–7.CrossRefGoogle Scholar
  67. 67.
    Astrakas LG, Zurakowski D, Tzika AA, Zarifi MK, Anthony DC, De Girolami U, Tarbell NJ, Black PM. Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res. 2004;10(24):8220–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Marcus KJ, Astrakas LG, Zurakowski D, Zarifi MK, Mintzopoulos D, Poussaint TY, Anthony DC, De Girolami U, Black PM, Tarbell NJ, Tzika AA. Predicting survival of children with CNS tumors using proton magnetic resonance spectroscopic imaging biomarkers. Int J Oncol. 2007;30(3):651–7.PubMedGoogle Scholar
  69. 69.
    Lazareff JA, Gupta RK, Alger J. Variation of post-treatment H-MRSI choline intensity in pediatric gliomas. J Neurooncol. 1999;41(3):291–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Warren KE, Frank JA, Black JL, Hill RS, Duyn JH, Aikin AA, Lewis BK, Adamson PC, Balis FM. Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol. 2000;18(5):1020–6.PubMedGoogle Scholar
  71. 71.
    Tzika AA, Astrakas LG, Zarifi MK, Zurakowski D, Poussaint TY, Goumnerova L, Tarbell NJ, Black PM. Spectroscopic and perfusion magnetic resonance imaging predictors of progression in pediatric brain tumors. Cancer. 2004;100(6):1246–56.CrossRefPubMedGoogle Scholar
  72. 72.
    Wald LL, Nelson SJ, Day MR, Noworolski SE, Henry RG, Huhn SL, Chang S, Prados MD, Sneed PK, Larson DA, Wara WM, McDermott M, Dillon WP, Gutin PH, Vigneron DB. Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg. 1997;87(4):525–34.CrossRefPubMedGoogle Scholar
  73. 73.
    Preul MC, Leblanc R, Caramanos Z, Kasrai R, Narayanan S, Arnold DL. Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases. Can J Neurol Sci. 1998;25(1):13–22.PubMedGoogle Scholar
  74. 74.
    Isobe T, Matsumura A, Anno I, Nagatomo Y, Yoshizawa T, Itai Y, Nose T. Changes in 1H-MRS in glioma patients before and after irradiation: the significance of quantitative analysis of choline-containing compounds. No Shinkei Geka. 2003;31(2):167–72.PubMedGoogle Scholar
  75. 75.
    Schlemmer HP, Bachert P, Herfarth KK, Zuna I, Debus J, van Kaick G. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol. 2001;22(7):1316–24.PubMedGoogle Scholar
  76. 76.
    Weybright P, Sundgren PC, Maly P, Hassan DG, Nan B, Rohrer S, Junck L. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. Am J Roentgenol. 2005;185(6):1471–6.CrossRefGoogle Scholar
  77. 77.
    Smith EA, Carlos RC, Junck LR, Tsien CI, Elias A, Sundgren PC. Developing a clinical decision model: MR spectroscopy to differentiate between recurrent tumor and radiation change in patients with new contrast-enhancing lesions. Am J Roentgenol. 2009;192(2):W45–52.CrossRefGoogle Scholar
  78. 78.
    Central Brain Tumor Registry of the United States. Statistical report: primary brain tumors in the United States, 1997–2001. 2004.Google Scholar
  79. 79.
    Warren K. Molecularly targeted therapy for pediatric brain tumors. J Neurooncol. 2005;75(3):335–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Simrandip K. Gill
    • 1
  • Ashok Panigrahy
    • 2
    • 3
  • Theodoros N. Arvanitis
    • 4
  • Andrew C. Peet
    • 5
  1. 1.School of Cancer SciencesUniversity of BirminghamBirminghamUK
  2. 2.Department of Pediatric RadiologyChildren’s Hospital of Pittsburgh of UPMCPittsburghUSA
  3. 3.Department of RadiologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  4. 4.School of Electronic, Electrical & Computer EngineeringThe University of BirminghamBirminghamUK
  5. 5.Institute of Child HealthUniversity of BirminghamBirminghamUK

Personalised recommendations