Magnetic Resonance Spectroscopy of the Fetal Brain



Fetal 1H-MRS is a promising non-invasive technique for assessing metabolic integrity in the developing brain, and has the potential to open a critical presently unavailable window for antenatal cerebral surveillance in the high-risk pregnancy. However, ongoing work is needed to improve the technical success of this emerging technique so as to increase and optimize its utility in the clinical setting. To date in vivo studies have provided important normative data for second and third trimester fetal brain metabolic concentrations in healthy fetuses. Additional studies are needed to elucidate the complex role of these metabolites throughout gestation. This in turn will lay the foundation for the development of clinically meaningful 1H-MRS biomarkers for the accurate assessment of fetal health and well-being. Finally, although a number of studies have performed in vivo spectroscopy studies, the long-term prognostic significance of these acute metabolic findings warrant further study.


Congenital Heart Disease Fetal Brain Intrauterine Growth Restriction White Matter Injury Periventricular Leukomalacia 


  1. 1.
    Heerschap A, van den Berg PP. Proton magnetic resonance spectroscopy of human fetal brain. Am J Obstet Gynecol. 1994;170:1150–1.PubMedGoogle Scholar
  2. 2.
    Girard N, Confort Gouny S, Viola A, et al. Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn Reson Med. 2006;56:768–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Limperopoulos C, Tworetzky W, McElhinney DB, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010;121:26–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Heerschap A, Kok RD, van der Berg PP. Antenatal proton MR spectroscopy of the human brain in vivo. Childs Nerv Syst. 2003;19:418–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Story L, Damodaram MS, Allsop JM, et al. Proton magnetic resonance spectroscopy in the fetus. Eur J Obstet Gynecol. 2011;158:3–8.CrossRefGoogle Scholar
  6. 6.
    Roelants-van Rijn AM, Groenendaal F, Stoutenbeek P, van der Grond J. Lactate in the foetal brain: detection and implications. Acta Paediatr. 2004;93:937–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Kreis R, Ernst T, Ross BD. Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med. 1993;30:424–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2002;48:949–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Limperopoulos C. Disorders of the fetal circulation and the fetal brain. Clin Perinatol. 2009;36:561–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Kok RD, van den Berg PP, van den Bergh AJ, Nijland R, Heerschap A. Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med. 2002;48:611–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Urenjak J, Willliams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992;59:55–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Huppi PS, Fusch C, Boesch C, et al. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res. 1995;37:145–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Roelants-van Rijn AM, van der Grond J, Stigter RH, de Vries LS, Groenendaal F. Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates. Pediatr Res. 2004;56:285–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Fenton BW, Lin CS, Macedonia C, Schellinger D, Ascher S. The fetus at term: In utero volume-selected proton MR spectroscopy with a breath-hold technique- A feasibility study. Radiology. 2001;219:563–6.PubMedGoogle Scholar
  15. 15.
    Cady E, Penrice J, Arness P, et al. Lactate, N-acetyl-aspartate, choline and creatine concentrations and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med. 1996;36:878–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Huppi PS, Warfield S, Kikinis R, et al. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Am Neurol. 1998;43:224–35.CrossRefGoogle Scholar
  17. 17.
    Bhakoo KK, Pearce D. In vitro expression of N-acetyl-aspartate by oligodendrocytes: Implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem. 2000;74:254–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Kreis R, Ernst T, Ross B. Absolute quantification of water and metabolites in the human brain. Part II. Metabolite concentrations. J Magn Reson. 1993;103:9–19.Google Scholar
  19. 19.
    Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82:736–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Beemster P, Groenen P, Steegers-Theunissen RPM. The involvement of inositol in reproduction. Nutr Rev. 2002;60:80–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Kato N. Dependence of long-term depression of postsynaptic metabotropic glutamate receptors in visual cortex. Proc Natl Acad Sci USA. 1993;90:3650–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Novak JE, Turner RS, Agranoff BW, Fisher SK. Differentiated human NT2-N neurons possess a high intracellular content of myo-inositol. J Neurochem. 1999;72:1431–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265:54–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82:736–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Greene ND, Copp AJ. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med. 1997;3:60–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Brighina E, Bresolin N, Pardi G, Rango M. Human fetal brain chemistry as detected by proton magnetic resonance spectroscopy. Pediatr Neurol. 2008;40(5):327–42.CrossRefGoogle Scholar
  27. 27.
    Barker P, Breiter S, Soher B, et al. Quantitative proton spectroscopy of canine brain: In vivo and in vitro correlations. Magn Reson Med. 1994;32:157–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Stockler S, Holzbach U, Hanefeld F, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res. 1994;36:409–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Bizzi A, Bugiani M, Salomons GS, et al. X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol. 2002;52:227–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Rutherford JM, Moody A, Crawshaw S, Rubin PC. Magnetic resonance spectroscopy in pre-eclampsia: evidence of cerebral ischaemia. Br J Obstet Gynaecol. 2003;110:416–23.CrossRefGoogle Scholar
  32. 32.
    Fisher MC, Zeisel SH, Mar MH, Sadler TW. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002;16:619–21.PubMedGoogle Scholar
  33. 33.
    Zeisel SH, Niculescu MD. Perinatal choline influences brain structure and function. Nutr Rev. 2004;64:197–203.CrossRefGoogle Scholar
  34. 34.
    Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993;13:981–9.PubMedGoogle Scholar
  35. 35.
    Jacobs MA, Horska A, van Zijil PC, Barker PB. Quantitative proton MR spectroscopic imaging of normal human cerebellum and brainstem. Magn Reson Med. 2001;46:699–705.PubMedCrossRefGoogle Scholar
  36. 36.
    Magistretti FG, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science. 1999;283:496–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Hutternlocher PR, de Courten C, Garey LJ, Van der Loos H. Synaptogenesis in human visual cortex-evidence for synapse ­elimination during normal development. Neurosci Lett. 1982;33:247–52.CrossRefGoogle Scholar
  38. 38.
    Gallo V, Ghiani CA. Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci. 2000;21:252–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Gallo V, Zhou JM, McBain CJ, Wright PW, Knutson PL, Amstrong RC. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J Neurosci. 1996;16:2659–70.PubMedGoogle Scholar
  40. 40.
    Yuan X, Eisen AM, McBain CJ, Gallo V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development. 1998;125:2901–14.PubMedGoogle Scholar
  41. 41.
    Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extra-cellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;4:1369–74.CrossRefGoogle Scholar
  42. 42.
    Hagberg H. Hypoxic-ischemic damage in the neonatal brain: excitatory amino acids. Dev Pharmacol Ther. 2002;18:139–44.Google Scholar
  43. 43.
    Follet P, Deng W, Dai W, et al. Topiramate protection in immature brain injury. J Neurosci. 2004;24:4412–20.CrossRefGoogle Scholar
  44. 44.
    Volpe JJ. Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics. 2005;116:221–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet. 2009;8:110–24.CrossRefGoogle Scholar
  46. 46.
    Itoh T, Beesley J, Itoh A, et al. AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem. 2002;81:390–402.PubMedCrossRefGoogle Scholar
  47. 47.
    Rosenberg PA, Dai W, Gan X, et al. Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res. 2003;71:237–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Girard N, Fogliarini C, Viola A, et al. MRS of normal and impaired fetal brain development. Eur J Radiol. 2006;57:217–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Vannucci RC, Vannucci SJ. Glucose metabolism in the developing brain. Semin Perinatol. 2000;24:107–15.PubMedCrossRefGoogle Scholar
  50. 50.
    Khalan S, Parimi P. Gluconeogenesis in the fetus and neonate. Semin Perinatol. 2000;24:94–106.CrossRefGoogle Scholar
  51. 51.
    Zarifi MK, Astrakas LG, Poussaint TY, Plessis Ad A, Zurakowski D, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology. 2002;225:859–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Miller SP, Newton N, Ferriero DM, et al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomics factors. Pediatr Res. 2002;52:71–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Loose JM, Miller SL, Supramanian VG, et al. Hypoxia induced activin secretion by the fetoplacental unit: differential responses related to gestation. BJOG. 2004;111:1346–52.PubMedCrossRefGoogle Scholar
  54. 54.
    van Cappellen van Walsum AM, Heerschap A, Nijhuis JG, Oeseburg B, Jongsma HW. Proton magnetic resonance spectroscopy of fetal lamb brain during hypoxia. Am J Obstet Gynecol. 1998;179:756–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Dixon JC, Cady EB, Priest AN, Thornton JS, Peebles DM. Growth restriction and the cerebral metabolic response to acute hypoxia of chick embryos in-ovo: a proton magnetic resonance spectroscopy study. Brain Res Dev Brain Res. 2005;160:203–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Robinson JN, Cleary-Goldman J, Arias-Mendoza F, et al. Detection of fetal lactate with two-dimensional-localized proton magnetic resonance spectroscopy. Obstet Gynecol. 2004;104:1208–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Azpurua HB, Alvarado A, Mayobre F, Salom T, Copel JA, Guevara-Zuloaga F. Metabolic assessment of the brain using proton magnetic resonance spectroscopy in a growth-restricted human fetus: case report. Am J Perinatol. 2008;25:305–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Charles-Edwards GD, Jan W, To M, Maxwell D, Keevil SF, Robinson R. Non-invasive detection and quantification of human foetal brain lactate in utero by magnetic resonance spectroscopy. Prenat Diagn. 2010;30:260–6.PubMedGoogle Scholar
  59. 59.
    Leth H, Toft P, Pryds O, Peitersen B, Lou H, Henriksen O. Brain lactate in preterm and growth-retarded neonates. Acta Paediatr. 1995;82:495–9.CrossRefGoogle Scholar
  60. 60.
    Cady E. Metabolite concentrations and relaxation in perinatal cerebral hypoxic-ischemic injury. Neurochem Res. 1996;21:1043–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Sanz-Cortes M, Figueras F, Bargallo N, Padilla N, Amat-Roldan I, Gratacos E. Abnormal brain microstructure and metabolism in small-for-gestational-age term fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2010;36:159–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Robertson NJ, Lewis RH, Cowan FM, et al. Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res. 2001;50:692–700.PubMedCrossRefGoogle Scholar
  63. 63.
    Kok RD, Steegers-Theunissen RPM, Eskes TKA, Heerschap A, van den Berg PP. Decreased relative brain tissue levels of inositol in fetal hydrocephalus. Am J Obstet Gynecol. 2003;188(4):978–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Bluml S, McComb JG, Ross BD. Differentiation between cortical atrophy and hydrocephalus using 1H MRS. Magn Reson Med. 1997;37:395–403.PubMedCrossRefGoogle Scholar
  65. 65.
    Wolfberg A, Robinson JN, Mulkern R, Rybicki F, Du Plessis AJ. Identification of fetal cerebral lactate using magnetic resonance spectroscopy. Am J Obstet Gynecol. 2007;196:e-9–11.CrossRefGoogle Scholar
  66. 66.
    Robinson JN, Norwitz ER, Mulkern R, Brown SA, Rybicki F, Tempany CMC. Prenatal diagnosis of pyruvate dehydrogenase deficiency using magnetic resonance imaging. Prenat Diagn. 2001;21:1053–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Brown RM, Dahl HHM, Brown GK. X-chromosome localization of the functional gene for the El α (alpha) subunit of the human pyruvate dehydrogenase complex. Genomics. 1989;41:74–81.Google Scholar
  68. 68.
    Brown GK, Otero LJ, Le Gris M, Brown RM. Pyruvate dehydrogenase deficiency. J Med Genet. 1994;31:875–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Cross JH, Connelly A, Gadian DG, et al. Clinical diversity of pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;10:276–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Shevell MI, Matthews PM, Scriver CR, et al. Cerebral dysgenesis lactic academia: an MRI/MRS phenotype associated with pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;11:224–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Hernandez MJ, Vannucci RC, Salcedo A, Brennan RW. Cerebral blood flow and metabolism during hypoglycemia in newborn dogs. J Neurochem. 1980;35:622–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Advanced Pediatric Brain Imaging Research CenterWashingtonUSA
  2. 2.George Washington University Health CenterWashingtonUSA
  3. 3.Children’s National Medical CenterWashingtonUSA

Personalised recommendations