Advertisement

Phenylketonuria

  • Arabhi Nagasunder
  • Richard Koch
Chapter

Abstract

Phenylketonuria (PKU) is an autosomal recessive genetic disorder caused by a defect in the hepatic enzyme phenylalanine hydroxylase (PAH) characterized by elevated levels of blood phenylalanine (Phe) leading to severely impaired brain development. In addition to poor neurological outcomes, untreated PKU can lead to microcephaly, tremor of hands, epilepsy, spastic paraparesis, behavioral problems, and schizophrenia. Early diagnosis and inception of a Phe-restricted diet after the newborn period prevents mental retardation and other neurological symptoms in PKU patients. With PKU, various mutations of the PAH gene have been identified along with their severity based on their enzyme activity. One of the main motivations for measuring brain Phe levels is that new drugs may limit/reduce the transport of Phe into the brain. Thus, plasma Phe levels might be insufficient surrogate markers for brain Phe levels. However, the detection and quantitation of brain Phe with in vivo MR spectroscopy is uniquely challenging due to its low concentration and the position of Phe resonance (7.36 ppm) in a part of the spectrum that is generally not look at. Thus for measuring Phe accurately, a high level of expertise for acquiring high-quality data and advanced processing methods are required. It is for that reason, albeit phenylketonuria is a comparably frequently encountered metabolic disease that only few groups have attempted to explore the value of MRS in PKU.

Keywords

Intelligence Quotient Large Neutral Amino Acid Blood Phenylalanine Phenylpyruvic Acid Autosomal Recessive Genetic Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Guldberg P, Rey F, Zschocke J, Romano V, Francois B, et al. A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet. 1998;63:71–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Folling A. Ueber Ausscheidung von Phenylbrenztraubensaeure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezillitaet. Ztschr Physiol Chem. 1934;227:169–76.CrossRefGoogle Scholar
  3. 3.
    Bickel H, Gerrard J, Hickmans EM. The influence of phenylalanine intake on the chemistry and behaviour of a phenylketonuria child. Acta Ped. 1954;43(64–77):1954.Google Scholar
  4. 4.
    Guthriem R. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Ada Susi. Pediatrics. 1963;32:338–43.Google Scholar
  5. 5.
    Zeman J, Bayer M, Stepán J. Bone mineral density in patients with phenylketonuria. Acta Paediatr. 1999;88(12):1348–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Allen J, Humphries I, Waters D, Roberts D, Lipson A, Howman-Giles R, Gaskin K. Decreased bone mineral density in children with phenylketonuria. Am J Clin Nutr. 1994;59(2):419–22.PubMedGoogle Scholar
  7. 7.
    Hvas AM, Nexo E, Nielsen JB. Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria (PKU). J Inherit Metab Dis. 2006;29(1):47–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Rupp A, Kreis R, Zschocke J, Slotboom J, Boesch C, Rating D, Pietz J. Variability of blood–brain ratios of phenylalanine in typical patients with phenylketonuria. J Cereb Blood Flow Metab. 2001;21(3):276–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoeksma M, Reijngoud D, Pruim J, de Valk HW, Paans AM, van Spronsen FJ. Phenylketonuria: high plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metabol. 2009;96(4):177–82.CrossRefGoogle Scholar
  10. 10.
    Matalon R, Surendran S, Matalon KM, Tyring S, Quast M, Jinga W, Ezell E, Szucs S. Future role of large neutral amino acids in transport of phenylalanine into the brain. Pediatrics. 2003;112(6):1570–4.PubMedGoogle Scholar
  11. 11.
    Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch C, Bremer HJ. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999;103(8):1169–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Koch R, Moseley KD, Yano S, Nelson M, Moats RA. Large neutral amino acid therapy and phenylketonuria: a promising approach to treatment. Mol Genet Metabol. 2003;79(2):110–3.CrossRefGoogle Scholar
  13. 13.
    Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE. Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. AJNR Am J Neuroradiol. 2001;22(8):1583–6.PubMedGoogle Scholar
  14. 14.
    Kreis R, Pietz J, Penzien J, Herschkovitz N, Boesch C. Identification and quantitation of phenylalanine in the brain of patients with PKU by means of localized in vivo 1 H MRS. J Magn Reson B. 1995;107(3):242–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Rupp A, Kreis R, Zschocke J, Slotboom J, Boesch C, Rating D, Pietz J. Variability of blood–brain ratios of phenylalanine in typical patients with phenylketonuria. J Cereb Blood Flow Metab. 2001;21:276–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Leuzzi V, Tosetti M, Montanaro D, Carducci C, Artiola C, Antonozzi I, Burroni M, Carnevale F, Chiarotti F, Popolizio T, Giannatempo GM, D’Alesio V, Scarabino T. The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla MRI and magnetic resonance spectroscopy (1 H MRS) study. J Inherit Metab Dis. 2007;30:209–16.PubMedCrossRefGoogle Scholar
  17. 17.
    Schindeler S, Ghosh-Jerath S, Thompson S, Rocca A, Joy P, Kemp A, Rae C, Green K, Wilcken B, Christodoulou J. The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab. 2007;91:48–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Moats RA, Koch R, Moseley K, Guldberg P, Guttler F, Boles RG, Nelson Jr MD. Brain phenylalanine concentration in the management of adults with phenylketonuria. J Inherit Metab Dis. 2000; 23:7–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Koch R, Moats R, Guttler F, Guldberg P, Nelson Jr M. Blood–brain phenylalanine relationships in persons with phenylketonuria. Pediatrics. 2000;106:1093–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Möller HE, Vermathen P, Ullrich K, Weglage J, Koch H-G, Peters PE. In-vivo NMR spectroscopy in patients with phenylketonuria: changes of cerebral phenylalanine levels under dietary treatment. Neuropediatrics. 1995;26(4):199–202.PubMedCrossRefGoogle Scholar
  21. 21.
    Novotny EJ, Avison MJ, Herschkowitz N, Petroff OA, Prichard JW, Seashore MR, Rothman DL. In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spectroscopy. Pediatr Res. 1995;37(2):244–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Möller HE, Weglage J, Wiedermann D, Vermathen P, Bick U, Ullrich K. Kinetics of phenylalanine transport at the human blood–brain barrier investigated in vivo. Brain Res. 1997;778(2): 329–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Michals K, Matalon R. Phenylalanine metabolites, attention span and hyperactivity. Am J Clin Nutr. 1985;42(2):361–5.PubMedGoogle Scholar
  25. 25.
    Clarke DD, Lajtha AL, Maker HS. Intermediary metabolism. In: Siegel GJ et al., editors. Basic neurochemisty. 4th ed. New York: Raven; 1989. p. 541.Google Scholar
  26. 26.
    Moats RA, Scadeng M, Nelson MD. MR imaging and spectroscopy in PKU. Ment Retard Dev Disabil Res Rev. 1999;5(2):132–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Childrens Hospital Los AngelesLos AngelesUSA
  2. 2.Rudi Schulte Research InstituteSanta BarbaraUSA
  3. 3.USC Keck School of MedicineLos AngelesUSA

Personalised recommendations