• Kim M. Cecil
  • Diana M. Lindquist


The term “leukodystrophy” is generally reserved for those conditions that are both progressive and genetically determined. While these conditions may eventually involve and alter gray matter, the primary features impact the white matter. Leukodystrophies arise as a result of a gene defect that manages production or metabolism of exclusively one component of myelin. These defects cause imperfect growth and development or maintenance of myelin sheaths. For organizational purposes, the disorders described in this chapter can be classified as primary leukodystrophies, perioxisomal disorders producing a leukodystrophy and lysosomal disorders producing leukodystrophies.


White Matter Normal Appear White Matter Deep White Matter Metachromatic Leukodystrophy Zellweger Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author’s efforts were supported by grants from the National Institutes of Health, NIEHS R01 ES015559, NCI R01 CA112182, and NIMH P50 MH077138. The authors have no competing financial or non-financial interests to declare.


  1. 1.
    Tallan HH, Moore S, Stein WH. N-Acetyl-L-aspartic acid in brain. J Biol Chem. 1956;219(1):257–64.PubMedGoogle Scholar
  2. 2.
    Moffett JR, Tieman SB, Weinberger DR, Coyle JT, Namboodiri AMA. N-Acetylaspartate A unique neuronal molecule in the central nervous system; 2006, 2004; Bethesda, Maryland, USA.Google Scholar
  3. 3.
    Clark JF, Doepke A, Filosa JA, et al. N-acetylaspartate as a reservoir for glutamate. Med Hypotheses. 2006;67(3):506–12.PubMedCrossRefGoogle Scholar
  4. 4.
    De Stefano N, Bartolozzi ML, Guidi L, Stromillo ML, Federico A. Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. J Neurol Sci. 2005;233(1–2):203–8.PubMedCrossRefGoogle Scholar
  5. 5.
    van der Voorn JP, Pouwels PJ, Hart AA, et al. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology. 2006;241(2):510–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.PubMedGoogle Scholar
  7. 7.
    Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry. 2005;10(10):900–19.PubMedCrossRefGoogle Scholar
  8. 8.
    van der Knaap MS, Naidu S, Breiter SN, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001;22(3):541–52.PubMedGoogle Scholar
  9. 9.
    van der Knaap MS, Ramesh V, Schiffmann R, et al. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology. 2006;66(4):494–8.PubMedCrossRefGoogle Scholar
  10. 10.
    van der Knaap MS, Salomons GS, Li R, et al. Unusual variants of Alexander’s disease. Ann Neurol. 2005;57(3):327–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Dinopoulos A, Gorospe JR, Egelhoff JC, et al. Discrepancy between neuroimaging findings and clinical phenotype in Alexander disease. AJNR Am J Neuroradiol. 2006;27(10):2088–92.PubMedGoogle Scholar
  12. 12.
    Brockmann K, Dechent P, Meins M, et al. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol. 2003;250(3):300–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Madhavarao CN, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM. Immunohistochemical localization of aspartoacylase in the rat central nervous system. J Comp Neurol. 2004;472(3):318–29.PubMedCrossRefGoogle Scholar
  14. 14.
    Matalon R, Rady PL, Platt KA, et al. Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med. 2000;2(3):165–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Assadi M, Janson C, Wang DJ, et al. Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol. 2010;14(4):354–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Krawczyk H, Gradowska W. Characterisation of the 1 H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease. J Pharm Biomed Anal. 2003;31(3):455–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Gordon N. Canavan disease: a review of recent developments. Eur J Paediatr Neurol. 2001;5(2):65–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Moreno A, Ross BD, Bluml S. Direct determination of the N-acetyl-L-aspartate synthesis rate in the human brain by (13)C MRS and [1-(13)C]glucose infusion. J Neurochem. 2001;77(1):347–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Bluml S, Moreno A, Hwang JH, Ross BD. 1-(13)C glucose magnetic resonance spectroscopy of pediatric and adult brain disorders. NMR Biomed. 2001;14(1):19–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Aydinli N, Caliskan M, Calay M, Ozmen M. Use of localized proton nuclear magnetic resonance spectroscopy in Canavan’s disease. Turk J Pediatr. 1998;40(4):549–57.PubMedGoogle Scholar
  21. 21.
    Wittsack HJ, Kugel H, Roth B, Heindel W. Quantitative measurements with localized 1 H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging. 1996;6(6):889–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Engelbrecht V, Rassek M, Gartner J, Kahn T, Modder U. Magnetic resonance tomography and localized proton spectroscopy in 2 siblings with Canavan’s disease. Rofo. 1995;163(3):238–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Toft PB, Geiss-Holtorff R, Rolland MO, et al. Magnetic resonance imaging in juvenile Canavan disease. Eur J Pediatr. 1993;152(9):750–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Leegwater PA, Vermeulen G, Konst AA, et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat Genet. 2001;29(4):383–8.PubMedCrossRefGoogle Scholar
  25. 25.
    van der Knaap MS, Leegwater PA, Konst AA, et al. Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol. 2002;51(2):264–70.PubMedCrossRefGoogle Scholar
  26. 26.
    van der Knaap MS, Breiter SN, Naidu S, Hart AA, Valk J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology. 1999;213(1):121–33.PubMedGoogle Scholar
  27. 27.
    van der Knaap MS, Pronk JC, Scheper GC. Vanishing white matter disease. Lancet Neurol. 2006;5(5):413–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Pronk JC, van Kollenburg B, Scheper GC, van der Knaap MS. Vanishing white matter disease: a review with focus on its genetics. Ment Retard Dev Disabil Res Rev. 2006;12(2):123–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Bugiani M, Boor I, Powers JM, Scheper GC, van der Knaap MS. Leukoencephalopathy with Vanishing White Matter: A Review. J Neuropathol Exp Neurol. 2010;69(10):987–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Haren K, van der Voorn JP, Peterson DR, van der Knaap MS, Powers JM. The life and death of oligodendrocytes in vanishing white matter disease. J Neuropathol Exp Neurol. 2004;63(6):618–30.PubMedGoogle Scholar
  31. 31.
    van der Knaap MS, Barth PG, Gabreels FJ, et al. A new leukoencephalopathy with vanishing white matter. Neurology. 1997; 48(4):845–55.PubMedCrossRefGoogle Scholar
  32. 32.
    van der Knaap MS, Kamphorst W, Barth PG, Kraaijeveld CL, Gut E, Valk J. Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology. 1998;51(2):540–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Schiffmann R, Moller JR, Trapp BD, et al. Childhood ataxia with diffuse central nervous system hypomyelination. Ann Neurol. 1994;35(3):331–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Tedeschi G, Schiffmann R, Barton NW, et al. Proton magnetic resonance spectroscopic imaging in childhood ataxia with diffuse central nervous system hypomyelination. Neurology. 1995;45(8):1526–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Dreha-Kulaczewski SF, Dechent P, Finsterbusch J, et al. Early reduction of total N-acetyl-aspartate-compounds in patients with classical vanishing white matter disease. A long-term follow-up MRS study. Pediatr Res. 2008;63(4):444–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Hanefeld F, Holzbach U, Kruse B, Wilichowski E, Christen HJ, Frahm J. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics. 1993;24(5):244–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Scheper GC, van der Klok T, van Andel RJ, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39(4):534–9.PubMedCrossRefGoogle Scholar
  38. 38.
    van der Knaap MS, van der Voorn P, Barkhof F, et al. A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol. 2003;53(2):252–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Labauge P, Dorboz I, Eymard-Pierre E, Dereeper O, Boespflug-Tanguy O. Clinically asymptomatic adult patient with extensive LBSL MRI pattern and DARS2 mutation. J Neurol. 2010;258:335–7. doi: 10.1007/s00415-010-5755-5.PubMedCrossRefGoogle Scholar
  40. 40.
    Labauge P, Roullet E, Boespflug-Tanguy O, et al. Familial, adult onset form of leukoencephalopathy with brain stem and spinal cord involvement: inconstant high brain lactate and very slow disease progression. Eur Neurol. 2007;58(1):59–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Petzold GC, Bohner G, Klingebiel R, Amberger N, van der Knaap MS, Zschenderlein R. Adult onset leucoencephalopathy with brain stem and spinal cord involvement and normal lactate. J Neurol Neurosurg Psychiatry. 2006;77(7):889–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Uluc K, Baskan O, Yildirim KA, et al. Leukoencephalopathy with brain stem and spinal cord involvement and high lactate: a genetically proven case with distinct MRI findings. J Neurol Sci. 2008;273(1–2):118–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Tavora DG, Nakayama M, Gama RL, Alvim TC, Portugal D, Comerlato EA. Leukoencephalopathy with brainstem and spinal cord involvement and high brain lactate: report of three Brazilian patients. Arq Neuropsiquiatr. 2007;65(2):506–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Linnankivi T, Lundbom N, Autti T, et al. Five new cases of a recently described leukoencephalopathy with high brain lactate. Neurology. 2004;63(4):688–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Serkov SV, Pronin IN, Bykova OV, et al. Five patients with a recently described novel leukoencephalopathy with brainstem and spinal cord involvement and elevated lactate. Neuropediatrics. 2004;35(1):1–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Boor PK, de Groot K, Waisfisz Q, et al. MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp Neurol. 2005;64(5):412–9.PubMedGoogle Scholar
  47. 47.
    Blattner R, Von Moers A, Leegwater PA, Hanefeld FA, Van Der Knaap MS, Kohler W. Clinical and genetic heterogeneity in megalencephalic leukoencephalopathy with subcortical cysts (MLC). Neuropediatrics. 2003;34(4):215–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Patrono C, Di Giacinto G, Eymard-Pierre E, et al. Genetic heterogeneity of megalencephalic leukoencephalopathy and subcortical cysts. Neurology. 2003;61(4):534–7.PubMedCrossRefGoogle Scholar
  49. 49.
    van der Knaap MS, Lai V, Kohler W, et al. Megalencephalic leukoencephalopathy with cysts without MLC1 defect. Ann Neurol. 2010;67(6):834–7.PubMedGoogle Scholar
  50. 50.
    van der Knaap MS, Barth PG, Stroink H, et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol. 1995;37(3):324–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Leegwater PA, Boor PK, Yuan BQ, et al. Identification of novel mutations in MLC1 responsible for megalencephalic leukoencephalopathy with subcortical cysts. Hum Genet. 2002;110(3):279–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Brockmann K, Finsterbusch J, Terwey B, Frahm J, Hanefeld F. Megalencephalic leukoencephalopathy with subcortical cysts in an adult: quantitative proton MR spectroscopy and diffusion tensor MRI. Neuroradiology. 2003;45(3):137–42.PubMedGoogle Scholar
  53. 53.
    Hudson LD, Puckett C, Berndt J, Chan J, Gencic S. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc Natl Acad Sci USA. 1989;86(20):8128–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Gencic S, Abuelo D, Ambler M, Hudson LD. Pelizaeus-Merzbacher disease: an X-linked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein. Am J Hum Genet. 1989;45(3):435–42.PubMedGoogle Scholar
  55. 55.
    Garbern JY, Hobson GM. PLP1-Related Disorders. In: Pagon RA, Bird TC, Dolan CR, Stephens K, eds. GeneReviews [Internet]. Seattle: University of Washington; 1999 [updated 2010 Mar 16].Google Scholar
  56. 56.
    Hanefeld FA, Brockmann K, Pouwels PJ, Wilken B, Frahm J, Dechent P. Quantitative proton MRS of Pelizaeus-Merzbacher disease: evidence of dys- and hypomyelination. Neurology. 2005;65(5):701–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Provencher SW. Automatic quantitation of localized in vivo 1 H spectra with LCModel. NMR Biomed. 2001;14(4):260–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Takanashi J, Inoue K, Tomita M, et al. Brain N-acetylaspartate is elevated in Pelizaeus-Merzbacher disease with PLP1 duplication. Neurology. 2002;58(2):237–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Bonavita S, Schiffmann R, Moore DF, et al. Evidence for neuroaxonal injury in patients with proteolipid protein gene mutations. Neurology. 2001;56(6):785–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Pizzini F, Fatemi AS, Barker PB, et al. Proton MR spectroscopic imaging in Pelizaeus-Merzbacher disease. AJNR Am J Neuroradiol. 2003;24(8):1683–9.PubMedGoogle Scholar
  62. 62.
    Garbern JY, Yool DA, Moore GJ, et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain. 2002;125(Pt 3):551–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Mochel F, Boildieu N, Barritault J, et al. Elevated CSF N-acetylaspartylglutamate suggests specific molecular diagnostic abnormalities in patients with white matter diseases. Biochim Biophys Acta. 2010;1802(11):1112–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Mochel F, Engelke UF, Barritault J, et al. Elevated CSF N-acetylaspartylglutamate in patients with free sialic acid storage diseases. Neurology. 2010;74(4):302–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Valk J, van der Knaap MS. Selective vulnerability in toxic encephalopathies and metabolic disorder. Riv Neuroradiol. 1996;9:749–60.Google Scholar
  66. 66.
    De Stefano N, Dotti MT, Mortilla M, Federico A. Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain. 2001;124(Pt 1):121–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Kumar V, Abbas AK, Fausto N. Robbins and Cotran pathologic basis of disease. 7th ed. Philadelphia: Elsevier Saunders; 2005.Google Scholar
  68. 68.
    Brockmann K, Dechent P, Wilken B, Rusch O, Frahm J, Hanefeld F. Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology. 2003;60(5):819–25.PubMedCrossRefGoogle Scholar
  69. 69.
    Kruse B, Hanefeld F, Christen HJ, et al. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol. 1993;241(2):68–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Bruhn H, Kruse B, Korenke GC, et al. Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr. 1992;16(3):335–44.PubMedCrossRefGoogle Scholar
  71. 71.
    Confort-Gouny S, Vion-Dury J, Chabrol B, Nicoli F, Cozzone PJ. Localised proton magnetic resonance spectroscopy in X-linked adrenoleukodystrophy. Neuroradiology. 1995;37(7):568–75.PubMedCrossRefGoogle Scholar
  72. 72.
    Eichler FS, Barker PB, Cox C, et al. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology. 2002;58(6):901–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Eichler FS, Itoh R, Barker PB, et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology. 2002;225(1):245–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Izquierdo M, Adamsbaum C, Benosman A, Aubourg P, Bittoun J. MR spectroscopic imaging of normal-appearing white matter in adrenoleukodystrophy. Pediatr Radiol. 2000;30(9):621–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Korenke GC, Pouwels PJ, Frahm J, et al. Arrested cerebral adrenoleukodystrophy: a clinical and proton magnetic resonance spectroscopy study in three patients. Pediatr Neurol. 1996;15(2):103–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Kruse B, Barker PB, van Zijl PC, Duyn JH, Moonen CT, Moser HW. Multislice proton magnetic resonance spectroscopic imaging in X-linked adrenoleukodystrophy. Ann Neurol. 1994;36(4):595–608.PubMedCrossRefGoogle Scholar
  77. 77.
    Liang JS, Lee WT, Hwu WL, et al. Adrenoleukodystrophy: clinical analysis of 9 Taiwanese children. Acta Paediatr Taiwan. 2004;45(5):272–7.PubMedGoogle Scholar
  78. 78.
    Moser HW, Barker PB. Magnetic resonance spectroscopy: a new guide for the therapy of adrenoleukodystrophy. Neurology. 2005;64(3):406–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Oz G, Tkac I, Charnas LR, et al. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology. 2005;64(3):434–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Pouwels PJ, Kruse B, Korenke GC, Mao X, Hanefeld FA, Frahm J. Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics. 1998;29(5):254–64.PubMedCrossRefGoogle Scholar
  81. 81.
    Rajanayagam V, Balthazor M, Shapiro EG, Krivit W, Lockman L, Stillman AE. Proton MR spectroscopy and neuropsychological testing in adrenoleukodystrophy. AJNR Am J Neuroradiol. 1997;18(10):1909–14.PubMedGoogle Scholar
  82. 82.
    Rajanayagam V, Grad J, Krivit W, et al. Proton MR spectroscopy of childhood adrenoleukodystrophy. AJNR Am J Neuroradiol. 1996;17(6):1013–24.PubMedGoogle Scholar
  83. 83.
    Salvan AM, Confort-Gouny S, Chabrol B, Cozzone PJ, Vion-Dury J. Brain metabolic impairment in non-cerebral and cerebral forms of X-linked adrenoleukodystrophy by proton MRS: identification of metabolic patterns by discriminant analysis. Magn Reson Med. 1999;41(6):1119–26.PubMedCrossRefGoogle Scholar
  84. 84.
    Tourbah A, Stievenart JL, Iba-Zizen MT, et al. Localized proton magnetic resonance spectroscopy in patients with adult adrenoleukodystrophy. Increase of choline compounds in normal appearing white matter. Arch Neurol. 1997;54(5):586–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Tzika AA, Ball Jr WS, Vigneron DB, Dunn RS, Kirks DR. Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR Am J Neuroradiol. 1993;14(6):1267–81.PubMedGoogle Scholar
  86. 86.
    Tzika AA, Ball Jr WS, Vigneron DB, Dunn RS, Nelson SJ, Kirks DR. Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology. 1993;189(2):467–80.PubMedGoogle Scholar
  87. 87.
    Wilken B, Dechent P, Brockmann K, et al. Quantitative proton magnetic resonance spectroscopy of children with adrenoleukodystrophy before and after hematopoietic stem cell transplantation. Neuropediatrics. 2003;34(5):237–46.PubMedCrossRefGoogle Scholar
  88. 88.
    Ratai E, Kok T, Wiggins C, et al. Seven-Tesla proton magnetic resonance spectroscopic imaging in adult X-linked adrenoleukodystrophy. Arch Neurol. 2008;65(11):1488–94.PubMedCrossRefGoogle Scholar
  89. 89.
    Bonkowsky JL, Nelson C, Kingston JL, Filloux FM, Mundorff MB, Srivastava R. The burden of inherited leukodystrophies in children. Neurology. 2010;75(8):718–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Departments of Radiology, Pediatrics, Neuroscience and Environmental Health, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Departments of Radiology, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations