Proton Magnetic Resonance Spectroscopy and Spectroscopic Imaging of Primary Brain Tumors



Brain tumors comprise 2–5 % of all neoplastic lesions in adults and remain a significant cause of cancer morbidity and mortality in the USA. The estimated incidence of brain tumors is 14 per 100,000 people/year with 40–60 % of these individuals being diagnosed with having gliomas [1, 2]. Unfortunately, because of the aggressive infiltrative nature of these tumors, most gliomas continue to result in significant disability and death despite the use of the best therapies currently available [3].


Magnetic Resonance Spectroscopy Brainstem Glioma Tumor Population Magnetic Resonance Spectroscopy Study Proton Magnetic Resonance Spectroscopy 


  1. 1.
    CBTRUS Statistical Report. Primary Brain Tumors in the United States, 1995–1999, Hinsdale, IL: Central Brain Tumor Registry of the United States, 2002.Google Scholar
  2. 2.
    Davisa FG, Kupelian V, Freels S, et al. Prevalence estimates for primary brain tumors in the United States by behavior and major histology groups. Neuro Oncol. 2001;3:152–8.Google Scholar
  3. 3.
    Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol. 2007;114: 443–58.Google Scholar
  4. 4.
    Felix R, Schorner W, Laniado M, et al. MR imaging and gadolinium-DPTA. Radiology. 1985;156:681–8.Google Scholar
  5. 5.
    DeAngelis LM. Brain tumors. N Engl J Med. 2001;344:114–23.Google Scholar
  6. 6.
    Pronin IN, Holodny AI, Petraikin AV. MRI of high grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema. Neuroradiology. 1997;39:348–50.Google Scholar
  7. 7.
    Li X, Lu Y, Pirzkall A, et al. Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging. 2002;16:229–37.Google Scholar
  8. 8.
    Price SJ, Jena R, Burnet NG, et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: An image-guided biopsy study. AJNR Am J Neuroradiol. 2006;27: 1969–74.Google Scholar
  9. 9.
    Stall B, Zach L, Ning H, et al. Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas. Radiat Oncol. 2010;5:5. http// Scholar
  10. 10.
    Yu X, Liu Z, Tian Z, et al. Stereotactic biopsy for space-occupying lesions: clinical analysis of 550 cases. Stereotact Funct Neurosurg. 2000;75:103–8.Google Scholar
  11. 11.
    Alesch F, Pappaterra J, Trattig S, Koos WT. The role of stereotactic biopsy in radiosurgery. Acta Neurochir Suppl (Wien). 1995;63:20–4.Google Scholar
  12. 12.
    Pirzkall A, McKnight TR, Graves EE, et al. MR-spectroscopy guided target delineation for high grade gliomas. Int J Radiat Oncol Biol Phys. 2001;50(4):915–28.Google Scholar
  13. 13.
    Lee SW, Benedick BA, Marsch LH, et al. Patterns of failure following high dose 3-D conformal radiotherapy for high grade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol Biol Phys. 1999;43(1):79–88.Google Scholar
  14. 14.
    Brat DJ, Castellano-Sanchez AA, Hunter SB. Psuedopallisades in glioma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64:920–7.Google Scholar
  15. 15.
    Ross B, Michaelis T. Clinical applications of magnetic resonance spectroscopy. Magn Reson Q. 1994;10:191–247.Google Scholar
  16. 16.
    Howe FA. Magnetic resonance spectroscopy in vivo. In: Markisz JA, Whalen JP, editors. Principles and practice of MRI: selected topics. Stamford, Conn: Appleton and Lange; 1998. p. 17–107.Google Scholar
  17. 17.
    Chang SM, Prados MD. Chemotherapy for gliomas. Curr Opin Oncol. 1995;7:207–13.Google Scholar
  18. 18.
    Krauseneck P, Muller B. Chemotherapy of malignant gliomas: recent results. Cancer Res. 1994;135:135–47.Google Scholar
  19. 19.
    Krex D, Klink B, Hartman von Deimling A, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130:2596–606.Google Scholar
  20. 20.
    Toyooka M, Kimura H, Uematsu H, et al. Tissue characterization of glioma by proton magnetic resonance spectroscopy and perfusion-weighted magnetic resonance imaging: glioma grading and histological correlation. Clin Imaging. 2008;32:251–8.Google Scholar
  21. 21.
    McKnight TR, Lamborn KR, Love TD, et al. Correlation of magnetic resonance spectroscopic and growth characteristics within Grade II and III gliomas. J Neurosurg. 2007;106:660–6.Google Scholar
  22. 22.
    Law M, Yang S, Hao Y, et al. Glioma grading: Sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.Google Scholar
  23. 23.
    Howe FA, Barton SJ, Cudlip SA, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2003;49:223–32.Google Scholar
  24. 24.
    Croteau D, Scarpace L, Hearshen D, et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: Semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery. 2001;49(4):823–9.Google Scholar
  25. 25.
    Pruel MC, Caramanos Z, Collins DL, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med. 1996;2(3):323–5.Google Scholar
  26. 26.
    Huang BY, Kwock L, Castillo M, Smith JK. Association of choline levels and tumor perfusion in brain metastases assessed with proton MR spectroscopy and dynamic susceptibility contrast-enhanced perfusion weighted MRI. Technol Cancer Res Treat. 2010;9(4):327–38.Google Scholar
  27. 27.
    Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 2003;16: 123–31.Google Scholar
  28. 28.
    Tsien RD, Lai PH, Smith JS, Lazeyras F. Single voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. Am J Roentgenol. 1996;167:201–9.Google Scholar
  29. 29.
    Kwock L, Smith JK, Castillo M, et al. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7:859–68.Google Scholar
  30. 30.
    Cheng LL, Chang IW, Louis DN. Gonzalez RG, correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res. 1998;58:1825–32.Google Scholar
  31. 31.
    Moller-Hartmann W, Herminghaus S, Krings T. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002;44:371–81.Google Scholar
  32. 32.
    Magalhaes A, Godfrey W, Shen Y, et al. Proton magnetic resonance spectroscopy of brain tumors correlated with pathology. Acta Radiol. 2005;12:51–7.Google Scholar
  33. 33.
    Alger JR, Frank JA, Bizzi A, et al. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology. 1990;177:633–41.Google Scholar
  34. 34.
    Ramirez de Molina A, Gallego-Ortega D, Sarmentero-Estrada J, et al. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: Implications in cancer therapy. Int J Biochem Cell Biol. 2008;40:1753–63.Google Scholar
  35. 35.
    Umezu-Goto M, Kishi Y, Taira A, et al. Autotaxin has lysopholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol. 2002;158(2):227–33.Google Scholar
  36. 36.
    Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol. 2001;22:604–12.Google Scholar
  37. 37.
    McKnight TR, von dem Bussche MH, Vigneron DB, et al. Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg. 2002;97:794–802.Google Scholar
  38. 38.
    Stadlbauer A, Gruber S, Nimsky C, et al. Preoperative grading of gliomas by using metabolite quantification with high-spatial resolution proton MR imaging. Radiology. 2006;238(3):958–69.Google Scholar
  39. 39.
    Laws ER, Parney IF, Huang W, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg. 2003;99:467–73.Google Scholar
  40. 40.
    Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients wih glioblastoma multiforme: Prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.Google Scholar
  41. 41.
    Devaux BC, O’Fallon JR, Kelly PJ. Resection, biopsy, and survival in malignant glial neoplasms. A retrospective study of clinical parameters, therapy, and outcome. J Neurosurg. 1993;78:767–75.Google Scholar
  42. 42.
    Sandler HM. 3-D conformal radiotherapy for brain tumors: the university of Michigan experience. Front Radiat Ther Oncol. 1996;29:250–4.Google Scholar
  43. 43.
    Thorton AF, Hegarty TJ, Ten-Haken RK, et al. Three dimensional treatment planning of astrocytomas: a dosimetric study of cerebral irradiation. Int J Radiat Oncol Biol Phys. 1991;20:1309–15.Google Scholar
  44. 44.
    Radiation Therapy Oncology Group. Active Brain Protocols. 2012. Accessed 16 April 2012.Google Scholar
  45. 45.
    Nelson SJ, Graves E, Pirzkall A, et al. In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging. 2002;16:464–76.Google Scholar
  46. 46.
    Chan A, Lau A, Pirzkall A, et al. Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg. 2004;101:46–475.Google Scholar
  47. 47.
    Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3): 157–73.Google Scholar
  48. 48.
    McEllin B, Camacho CV, Mukherjee B, et al. PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res. 2010;70(13):5457–64.Google Scholar
  49. 49.
    Raza SM, Lang FF, Aggarwal BB. Necrosis and glioblastoma: a friend or a foe? A and hypothesis. Neurosurgery. 2002;51(1):2–13. review.Google Scholar
  50. 50.
    Joy AM, Beaudry CE, Tran NL, et al. Migrating glioma cells activate the P13K pathway and display decreased susceptibility to apoptosis. J Cell Sci. 2003;116(21):4409–17.Google Scholar
  51. 51.
    Martin AJ, Liu H, Hall WA, Truwit CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol. 2001;22:959–68.Google Scholar
  52. 52.
    Laprie A, Pirzkall A, Haas-Kogan DA, et al. Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62:20–31.Google Scholar
  53. 53.
    Ganslandt O, Stadlbauer A, Fahlbusch R, et al. Proton magnetic resonance spectroscopic imgaging integrated into image-guided surgery: Correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery. 2005;56(Supplement 2):291–8.Google Scholar
  54. 54.
    Chintala SK, Tonn JC, Rao JS. Matrix metalloproteases and their biological function in human gliomas. Int J Dev Neurosci. 1999;17:495–502.Google Scholar
  55. 55.
    Zhang K, Li C, Liu Y. Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2. Neuroradiology. 2007;49:913–9.Google Scholar
  56. 56.
    Stadlbauer A, Nimsky C, Buslei R, et al. Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration-initial results. Invest Radiol. 2007;42:218–23.Google Scholar
  57. 57.
    Rubin DB, Greim ML. The histopathology of irradiated endothelium. In: Rubin DB, editor. The radiation biology of the vascular endothelium. Boca Raton, FL: CRC Press; 1998. p. 13–38.Google Scholar
  58. 58.
    Bezabeth T, Mowat MRA, Greenberg AH, Smith ICP. Detection of drug-induced apoptosis and necrosis in human cervical cells using 1H NMR spectroscopy. Cell Death Differ. 2001;8:219–24.Google Scholar
  59. 59.
    Shih C-M, Ko W-C, Yang L-Y, et al. Detection of apoptosis and necrosis in normal human lung cells using 1H NMR specteroscopy. Ann N Y Acad Sci. 2005;1042:488–96.Google Scholar
  60. 60.
    Lyng H, Sitter B, Bathen TF, et al. Metabolic mapping by use of high resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas. BMC Cancer. 2007;7:1–12., Accessed Nov 4, 2012.
  61. 61.
    Pruel MC, LeBlanc R, Caramanos Z, et al. Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases. Can J Neurol Sci. 1998;25(1):13–22.Google Scholar
  62. 62.
    Taylor JS, Langston JW, Reddick WE, et al. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys. 1996;36(5):1251–61.Google Scholar
  63. 63.
    Wald LL, Nelson SJ, Day MR, et al. Serial proton magnetic resonance imaging of glioblastoma multiforme after brachytherapy. J Neurosurg. 1997;87(4):525–34.Google Scholar
  64. 64.
    Chernov MF, Hayashi M, Izawa M, et al. Multivoxel proton RS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol. 2006;23(1):19–27.Google Scholar
  65. 65.
    Horska A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):294–310.Google Scholar
  66. 66.
    Tzika AA, Strakas LG, Zarifi MK, et al. Spectroscopic and perfusion magnetic resonance imaging predictors of progression in pediatric brain tumors. Cancer. 2004;100:1246–56.Google Scholar
  67. 67.
    Catalaa I, Henry R, Cillon WP, et al. Perfusion, diffusion, and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed. 2006;19:463–75.Google Scholar
  68. 68.
    Goebell E, Fiehler J, Ding X-O, et al. Disarrangement of fiber tracts and decline of neuronal density correlate in glioma patients. A combined diffusion tensor imaging and 1H-MR spectroscopy study. AJNR Am J Neuroradiol. 2006;27:1426–31.Google Scholar
  69. 69.
    Pope WB, Chen JH, Dong J, et al. Relationship between gene expression and enhancement in glioblastoma multiforme: Exploratory DNA microarray analysis. Radiology. 2008;249(1):268–77.Google Scholar
  70. 70.
    Kanu OO, Hughes B, Di C, et al. Glioblastoma multiforme oncogenomics and signaling pathways. Oncology. 2009;3:39–52.Google Scholar
  71. 71.
    Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EFGR, and NF1. Cancer Cell. 2010;17:98–110.Google Scholar
  72. 72.
    Brennan C, Momota H, Hambardzumyan D, et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic pathways. PLoS One. 2009;4(11):1–10. e7752.Google Scholar
  73. 73.
    Cheng LL, Anthony DC, Comite AR, et al. Quantification of microheterogeneity in glioblastoma multiforme with ex vivo high resolution magic angle spinning (HRMAS) proton magnetic resonance spectroscopy. Neuro Oncol. 2000;2:87–95.Google Scholar
  74. 74.
    Tzika AA, Astrakas L, Cao H, et al. Combination of high-resolution magic angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies. Int J Mol Med. 2007;30:199–208.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of North Carolina, School of MedicineChapel HillUSA

Personalised recommendations