DTI for Presurgical Mapping

  • Andrew P. Klein
  • John L. Ulmer
  • Wade M. Mueller
  • Flavius D. Raslau
  • Wolfgang Gaggl
  • Mohit Maheshwari


While there are many current and potential applications for diffusion tensor imaging (DTI), the ability to map white matter tracts prior to surgical resection of brain tumors is responsible for the emergence of this powerful technology into the clinical realm. Dramatic successes have propelled the clinical translation. By defining spatial relationships between the lesion and functional white matter networks, DTI plays a critical role in creating a patient-specific neurosurgical plan and guiding intraoperative assessments. When used effectively, DTI can improve surgical outcomes, maximizing tumor resections while minimizing postsurgical deficits. Optimal utilization and interpretation of DTI require an understanding of the technique, data visualization methods, normal white matter anatomy, effect of pathological processes, and limitations.


White Matter Diffusion Tensor Imaging White Matter Tract Fiber Tracking Superior Longitudinal Fasciculus 


  1. 1.
    Smith JS, Chang EF, Lamborn KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26: 1338–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Bernstein M, Berger M. Neurooncology: the essentials. 2nd ed. New York, NY: Thieme; 2008.Google Scholar
  3. 3.
    Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Stummer W, Pichlmeier U, Meinel T, ALA-Glioma Study Group, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401.PubMedCrossRefGoogle Scholar
  5. 5.
    Ryken TC, Frankel B, Julien T, et al. Surgical management of newly diagnosed glioblastoma in adults: role of cytoreductive surgery. J Neurooncol. 2008;89: 271–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Claus EB, Horlacher A, Hsu L, et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005;103:1227–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang S, Parney IF, McDermott M, et al. Perioperative complications and neurological outcome of first versus second craniotomy among patients enrolled in the Glioma Outcomes Project. J Neurosurg. 2003;98: 1175–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Ciric I, Ammirati M, Vick N, et al. Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection. Neurosurgery. 1987;21:21–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Fadul C, Wood J, Thaler H, et al. Morbidity and mortality for excision of supratentorial gliomas. Neurology. 1988;38:1374–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Sawaya R, Hammoud M, Schoppa D, et al. Neurosurgical outcomes in a modern series of 400 craniotomies for treatment parenchymal tumors. Neurosurgery. 1998;42:1044–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Brell M, Ibanez J, Caral L, et al. Factors influencing surgical complications of intra-axial brain tumors. Acta Neurochir (Wien). 2000;142:739–50.CrossRefGoogle Scholar
  12. 12.
    Deveaux BC, O’Fallon JR, Kelly PR. Resection, biopsy, and survival in malignant glial neoplasms: a retrospective study of clinical parameters, therapy, and outcome. J Neurosurg. 1993;78(5):767–75.CrossRefGoogle Scholar
  13. 13.
    Vorster SJ, Barnett GH. A proposed preoperative grading scheme to assess risk for surgical resection of primary and secondary intraaxial brain tumors. Neurosurg. 1998 Focus 4, article 2.Google Scholar
  14. 14.
    Taylor MD, Berstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999;90:35–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Bohinski RJ, Kokkino AK, Warnick RE, et al. Glioma resection in a shared resource operating room after optimal image-guided frameless stereotactic resection. Neurosurgery. 2001;48:731–42.PubMedGoogle Scholar
  16. 16.
    Mueller W. DTI for neurosurgeons: cases and concepts. 2010 International brain mapping and intra-operative surgical planning society (IBMISPS) brain, spinal cord mapping and image guided therapy conference, 27 May 2010, Bethesda, MN; 2010Google Scholar
  17. 17.
    Ulmer JL, Berman JI, Mueller, WM, et al. Issues in translating imaging technology and presurgical diffusion tensor imaging. In: Faro SH, Mohamed FB, Law M, Ulmer JL, editors. Functional neuroradiology: principles and clinical applications. 1st ed. Springer; 2011.Google Scholar
  18. 18.
    Aralasmak A, Ulmer JL, Kocak M, et al. Association commissural, and projection pathways and their functional deficit reported in literature. J Comput Assist Tomogr. 2006;30(5):695–716.PubMedCrossRefGoogle Scholar
  19. 19.
    Brazos PW, Masdeu JC, Biller J. Localization in clinical neurology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.Google Scholar
  20. 20.
    Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRefGoogle Scholar
  21. 21.
    Ulmer JL, Hacein-Bey L, Mathews VP, et al. Lesion-induced pseudo-dominance at fMRI: implications for pre-operative assessments. Neurosurgery. 2004;55:569–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Ulmer JL, Salvan CV, Mueller WM, et al. The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat. 2004;3:567–76.PubMedGoogle Scholar
  23. 23.
    Schmahmann JD, Pandya DN. Fiber pathways of the brain. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  24. 24.
    Makris N, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2005;15(6):854–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Price CJ. The anatomy of language: contributions from functional neuroimaging. J Anat. 2000;197(Pt 3):335–59.PubMedCrossRefGoogle Scholar
  26. 26.
    Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92:67–99.PubMedCrossRefGoogle Scholar
  27. 27.
    Duffau H. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain. 2005;128:797–810.PubMedCrossRefGoogle Scholar
  28. 28.
    Berger M. Minimalism through intraoperative functional mapping. Clin Neurosurg. 1996;43:324–37.PubMedGoogle Scholar
  29. 29.
    Duffau H, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. Brain. 2002;125(1):199–214.PubMedCrossRefGoogle Scholar
  30. 30.
    Ulmer JL, Krouwer HG, Mueller WM, et al. Pseudo-reorganization of language cortical function at FMR Imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am J Neuroradiol. 2003;24:213–7.PubMedGoogle Scholar
  31. 31.
    Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping of the human brain. Magn Reson Med. 1999;42:526–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Klein AP. Diffusion tensor imaging atlas of the brain. In: Faro SH, Mohamed FB, Law M, Ulmer JL, editors. Functional neuroradiology: principles and clinical applications. 1st ed. Springer; 2011.Google Scholar
  33. 33.
    Mori S, Crain BJ, Chacko VP, et al. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Conturo TE, Lori NF, Cull TS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96:10422–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Basser P, Pajevic S, Pierpaoli C. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Lazar M, Alexander A. Bootstrap white matter tractography (BOOT-TRAC). Neuroimage. 2005;24:524–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Parker G, Haroon H, Wheelr-Kingshott C. A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging. 2003;18:242–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Mori S, Kaufmann WE, Davatzikos C, et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med. 2002;47:215–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17:77–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:356–69.PubMedGoogle Scholar
  41. 41.
    Han BS, Hong JH, Hong C, et al. Location of the corticospinal tract at the corona radiata in human brain. Brain Res. 2010;1326:75–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Holodny A, Schwartz T, Ollenschleger M, et al. Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg. 2001;95:1082.PubMedCrossRefGoogle Scholar
  43. 43.
    Clark C, Barrick T, Murphy M, et al. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage. 2003;20:1601–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Berman J, Berger M, Mukherjee P, et al. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101:66–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Tuch D. Q-ball imaging. Magn Reson Med. 2004;52: 1358–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47:1083–99.PubMedCrossRefGoogle Scholar
  47. 47.
    Tournier J, Calamante F, Gadian D, et al. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23:1176–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Wedeen VJ, Hagmann P, Tseng W, et al. Mapping comlex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54:1377–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Tropine A, Vucurevic G, Delani P, et al. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Reson Imaging. 2004;6:905–12.CrossRefGoogle Scholar
  50. 50.
    Wang FN, Huang TY, Lin FH, et al. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med. 2005;54(5):1232–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Gaggl W, Jesmanowicz A, Prost RW. Eddy Current correction in diffusion tensor imaging using phase-correction in k-space. Annual meeting of the organization for human brain mapping, 18–23 June 2009, San Francisco, USA; 2009.Google Scholar
  52. 52.
    Basser PJ, Pajevic S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med. 2000;44:41–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Anderson A. Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med. 2001;46:1174–88.PubMedCrossRefGoogle Scholar
  54. 54.
    Lazar M, Alexander A. Divergence/convergence effects on the accuracy of white matter tractography algorithms. ISMRM 2003; Toronto, Canada p. 2160.Google Scholar
  55. 55.
    Leclercq D, Duffau H, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112:503–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Field AS, Alexander AL. Diffusion tensor tractography around brain tumors: concepts and applications. “Imaging Brain Tumors: From Physiology to Therapy” (Clinical categorical course), International society for magnetic resonance in medicine (ISMRM) 16th scientific meeting and exhibition; 2008 May 5; Toronto, Canada; Syllabus.Google Scholar
  57. 57.
    Coenen VA, Krings T, Axer H, et al. Intraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principal motor pathways. Surg Neurol. 2003;60:381–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61:935–48. discussion 948–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Berman JI, Berger MS, Chung SW, et al. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg. 2007;107:488–94.PubMedCrossRefGoogle Scholar
  60. 60.
    Pillai JJ. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol. 2010;31(2):219–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrew P. Klein
    • 1
  • John L. Ulmer
    • 1
  • Wade M. Mueller
    • 2
  • Flavius D. Raslau
    • 1
  • Wolfgang Gaggl
    • 1
  • Mohit Maheshwari
    • 3
  1. 1.Department of RadiologyMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of NeurosurgeryMedical College of WisconsinMilwaukeeUSA
  3. 3.Children’s Hospital and Health SystemMedical College of WisconsinWauwatosaUSA

Personalised recommendations