Diffusion Tensor Imaging: Introduction and Applications to Brain Tumor Characterization



Accurate diagnosis and grading of brain tumors are often crucial as the management and prognosis substantially differ depending on the type and grade of the tumor. Diffusion tensor magnetic resonance imaging (DTI) has been recently applied to brain tumor characterization. Various DTI metrics derived from the diffusion-weighted imaging data provide information about the orientation and architecture of tissue microstructure at the voxel level. This chapter provides a brief review on the basic principles of DTI and its clinical application in brain tumors. It also includes discussions on some practical issues to further improve the reliability and reproducibility of the method.


Brain Tumor Brain Metastasis Fractional Anisotropy Mean Diffusivity Diffusion Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Central Brain Tumor Registry of the United States. Statistical report: primary brain and central nervous system tumors diagnosed in the United States, 2004–2007. Central Brain Tumor Registry of the United States. 2011.Google Scholar
  2. 2.
    Chenevert TL, Ross BD. Diffusion imaging for therapy response assessment of brain tumor. Neuroimaging Clin N Am. 2009;19(4):559–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.PubMedCrossRefGoogle Scholar
  4. 4.
    Batchelor T, Loeffler JS. Primary CNS lymphoma. J Clin Oncol. 2006;24(8):1281–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Giese A, Westphal M. Treatment of malignant glioma: a problem beyond the margins of resection. J Cancer Res Clin Oncol. 2001;127(4):217–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Soffietti R, Ruda R, Mutani R. Management of brain metastases. J Neurol. 2002;249(10):1357–69.PubMedCrossRefGoogle Scholar
  7. 7.
    Murakami R, Hirai T, Sugahara T, et al. Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology. 2009;251(3): 838–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamasaki F, Kurisu K, Satoh K, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology. 2005;235(3):985–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Stadlbauer A, Ganslandt O, Buslei R, et al. Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology. 2006;240(3):803–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Al-Okaili RN, Krejza J, Woo JH, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy—initial experience. Radiology. 2007;243(2):539–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PC. Diffusion tensor MR imaging of the brain and white matter tractography. AJR Am J Roentgenol. 2002;178(1):3–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15(7–8):435–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111(3): 209–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R. Processing and visualization for diffusion tensor MRI. Med Image Anal. 2002;6(2): 93–108.PubMedCrossRefGoogle Scholar
  15. 15.
    Alexander AL, Hasan K, Kindlmann G, Parker DL, Tsuruda JS. A geometric analysis of diffusion tensor measurements of the human brain. Magn Reson Med. 2000;44(2):283–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Chenevert TL, Sundgren PC, Ross BD. Diffusion imaging: insight to cell status and cytoarchitecture. Neuroimaging Clin N Am. 2006;16(4):619–32. viii-ix.PubMedCrossRefGoogle Scholar
  17. 17.
    Guo AC, Cummings TJ, Dash RC, Provenzale JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology. 2002;224(1):177–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Nagar VA, Ye JR, Ng WH, et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008;29(6):1147–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Toh CH, Castillo M, Wong AM, et al. Differentiation between classic and atypical meningiomas with use of diffusion tensor imaging. AJNR Am J Neuroradiol. 2008;29(9):1630–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Lu S, Ahn D, Johnson G, Law M, Zagzag D, Grossman RI. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology. 2004; 232(1):221–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2011;32(3):507–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. Neuroimage. 2009; 44(3):653–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Lu S, Ahn D, Johnson G, Cha S. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol. 2003;24(5): 937–41.PubMedGoogle Scholar
  24. 24.
    Morita K, Matsuzawa H, Fujii Y, Tanaka R, Kwee IL, Nakada T. Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. J Neurosurg. 2005;102(2):336–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee EJ, Lee SK, Agid R, Bae JM, Keller A, Terbrugge K. Preoperative grading of presumptive low-grade astrocytomas on MR imaging: diagnostic value of minimum apparent diffusion coefficient. AJNR Am J Neuroradiol. 2008;29(10):1872–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu X, Tian W, Kolar B, et al. MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neuro Oncol. 2011;13(4):447–55.PubMedCrossRefGoogle Scholar
  27. 27.
    Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol. 2006;58(3):394–403.PubMedCrossRefGoogle Scholar
  28. 28.
    Oh J, Cha S, Aiken AH, et al. Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J Magn Reson Imaging. 2005;21(6):701–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Jolapara M, Kesavadas C, Radhakrishnan VV, et al. Role of diffusion tensor imaging in differentiating subtypes of meningiomas. J Neuroradiol. 2010;37(5): 277–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Zamecnik J. The extracellular space and matrix of gliomas. Acta Neuropathol. 2005;110(5):435–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Vargova L, Homola A, Zamecnik J, Tichy M, Benes V, Sykova E. Diffusion parameters of the extracellular space in human gliomas. Glia. 2003;42(1):77–88.PubMedCrossRefGoogle Scholar
  32. 32.
    McConville P, Hambardzumyan D, Moody JB, et al. Magnetic resonance imaging determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. Clin Cancer Res. 2007;13(10):2897–904.PubMedCrossRefGoogle Scholar
  33. 33.
    Moffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A. 2005;102(15): 5524–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.PubMedGoogle Scholar
  35. 35.
    Wang S, Wolf RL, Woo JH, et al. Actinomycotic brain infection: registered diffusion, perfusion MR imaging and MR spectroscopy. Neuroradiology. 2006;48(5): 346–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Beppu T, Inoue T, Shibata Y, et al. Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neurooncol. 2003;63(2):109–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Beppu T, Inoue T, Shibata Y, et al. Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol. 2005;63(1):56–61. discussion 61.PubMedCrossRefGoogle Scholar
  38. 38.
    Haris M, Gupta RK, Husain N, Hasan KM, Husain M, Narayana PA. Measurement of DTI metrics in hemorrhagic brain lesions: possible implication in MRI interpretation. J Magn Reson Imaging. 2006;24(6): 1259–68.PubMedCrossRefGoogle Scholar
  39. 39.
    Kinoshita M, Hashimoto N, Goto T, et al. Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. NeuroImage. 2008;43:29–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Toh CH, Castillo M, Wong AM, et al. Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol. 2008;29(3):471–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107(3):174–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang W, Steward CE, Desmond PM. Diffusion tensor imaging in glioblastoma multiforme and brain metastases: the role of p, q, L, and fractional anisotropy. AJNR Am J Neuroradiol. 2009;30(1):203–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Reiche W, Schuchardt V, Hagen T, Il'yasov KA, Billmann P, Weber J. Differential diagnosis of intracranial ring enhancing cystic mass lesions–role of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI). Clin Neurol Neurosurg. 2010;112(3):218–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Koeller KK, Smirniotopoulos JG, Jones RV. Primary central nervous system lymphoma: radiologic-pathologic correlation. Radiographics. 1997;17(6):1497–526.PubMedGoogle Scholar
  45. 45.
    Rees JH, Smirniotopoulos JG, Jones RV, Wong K. Glioblastoma multiforme: radiologic-pathologic correlation. Radiographics. 1996;16(6):1413–38. quiz 1462–1413.PubMedGoogle Scholar
  46. 46.
    Zhang M, Olsson Y. Hematogenous metastases of the human brain—characteristics of peritumoral brain changes: a review. J Neurooncol. 1997;35(1):81–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang S, Bastin ME, Laidlaw DH, Sinha S, Armitage PA, Deisboeck TS. Visualization and analysis of white matter structural asymmetry in diffusion tensor MRI data. Magn Reson Med. 2004;51(1):140–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim S, Pickup S, Hsu O, Poptani H. Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors. NMR Biomed. 2008;21(3):208–16.PubMedCrossRefGoogle Scholar
  49. 49.
    Lope-Piedrafita S, Garcia-Martin ML, Galons JP, Gillies RJ, Trouard TP. Longitudinal diffusion tensor imaging in a rat brain glioma model. NMR Biomed. 2008;21(8):799–808.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang J, van Zijl PC, Laterra J, et al. Unique patterns of diffusion directionality in rat brain tumors revealed by high-resolution diffusion tensor MRI. Magn Reson Med. 2007;58(3):454–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Kashimura H, Inoue T, Ogasawara K, et al. Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J Neurosurg. 2007;107(4):784–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Tropine A, Dellani PD, Glaser M, et al. Differentiation of fibroblastic meningiomas from other benign subtypes using diffusion tensor imaging. J Magn Reson Imaging. 2007;25(4):703–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Kumar M, Gupta RK, Nath K, et al. Can we differentiate true white matter fibers from pseudofibers inside a brain abscess cavity using geometrical diffusion tensor imaging metrics? NMR Biomed. 2007;21(6): 581–8.CrossRefGoogle Scholar
  54. 54.
    Santhosh K, Thomas B, Radhakrishnan VV, et al. Diffusion tensor and tensor metrics imaging in intracranial epidermoid cysts. J Magn Reson Imaging. 2009;29(4):967–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Gupta RK, Haris M, Husain N, Saksena S, Husain M, Rathore RK. DTI derived indices correlate with immunohistochemistry obtained matrix metalloproteinase (MMP-9) expression in cellular fraction of brain tuberculoma. J Neurol Sci. 2008;275(1–2):78–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee EJ, Lee EJ, Lee EJ, Terbrugge K, Mikulis D, et al. Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. AJR Am J Roentgenol. 2011;196(1):71–6.PubMedCrossRefGoogle Scholar
  57. 57.
    van Westen D, Latt J, Englund E, Brockstedt S, Larsson EM. Tumor extension in high-grade gliomas assessed with diffusion magnetic resonance imaging: values and lesion-to-brain ratios of apparent diffusion coefficient and fractional anisotropy. Acta Radiol. 2006;47(3):311–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Kinoshita M, Goto T, Okita Y, et al. Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema. J Neurooncol. 2010;96(3):409–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002;222(3):715–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Emblem KE, Nedregaard B, Nome T, et al. Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology. 2008;247(3):808–17.PubMedCrossRefGoogle Scholar
  61. 61.
    Jakab A, Molnar P, Emri M, Berenyi E. Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps. Neuroradiology. 2011;53(7):483–91. Epub 2010 Sep 21.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim HS, Kim JH, Kim SH, Cho KG, Kim SY. Posttreatment high-grade glioma: usefulness of peak height position with semiquantitative MR perfusion histogram analysis in an entire contrast-enhanced lesion for predicting volume fraction of recurrence. Radiology. 2010;256(3):906–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Tozer DJ, Jager HR, Danchaivijitr N, et al. Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed. 2007;20(1): 49–57.PubMedCrossRefGoogle Scholar
  64. 64.
    Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology. 2009;252(1):182–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Pope WB, Lai A, Mehta R, et al. Apparent diffusion coefficent histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol. 2011;32(5): 882–9.Google Scholar
  66. 66.
    Wang S, Kim S, Zhang Y, et al. Determination of grade and subtype of meningiomas by using histogram analysis of diffusion-tensor Imaging metrics. Radiology. 2012;262:584–92.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Neuroradiology, Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Radiology, Center for Biomedical ImagingNew York University School of MedicineNew YorkUSA
  3. 3.Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations