Advanced Diffusion MR Tractography for Surgical Planning



A goal of neurosurgery is to preserve both functionally important cortices and the underlying white matter tracts. Damage to either portion of a pathway may cause postoperative functional deficit. Diffusion MR tractography remains the only noninvasive method of determining the subcortical course of white matter tracts. Tractography based upon diffusion MR can follow a specific white matter tract from voxel to voxel in 3D through the brain. Diffusion MR tractography complements other surgical mapping techniques which are restricted to the grey matter. However, the quality and clinical utility of diffusion tractography is dependent on the type of MRI acquisition and post-processing algorithm used. Traditional diffusion tensor imaging (DTI) is widely used for surgical planning, but fails to accurately represent the microstructure of crossing white matter tracts. The insufficiencies of DTI have motivated the development of advanced diffusion MR techniques capable of accurately describing the microstructure and connectivity of complex white matter tracts. This chapter describes how advanced diffusion MR improves white matter tract localization and enhances surgical planning.

It is critical that the capabilities and limitations of advanced diffusion MR be understood so the technique can be safely used for surgical planning. The first section of this chapter describes the motivation for translating advanced diffusion MR into a tool for surgical planning. The second section reviews the acquisition and reconstruction of various advanced diffusion MR techniques. The final section describes how high angular resolution diffusion imaging (HARDI) tractography has been translated into a routinely used tool for surgical planning.


Diffusion Tensor Imaging White Matter Tract Axonal Bundle Fiber Tractography Surgical Navigation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15(7–8):435–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage. 2007;34(1):144–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2001;45(6):935–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. Diffusion MRI of complex neural architecture. Neuron. 2003;40(5):885–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Basser PJ, Pierpaoli C. A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med. 1998;39(6):928–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Wedeen VJ, Hagmann P, Tseng WI, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54(6):1377–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin C, Wedeen VJ, Chen J, Yao C, Tseng WI. Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. Neuroimage. 2003;19(3): 482–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuo L, Chen J, Wedeen VJ, Tseng WI. Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage. 2008;41(1):7–18.PubMedCrossRefGoogle Scholar
  10. 10.
    Reese TG, Benner T, Wang R, Feinberg DA, Wedeen VJ. Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI. J Magn Reson Imaging. 2009;29(3):517–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N. Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn Reson Med. 2010;64(2):554–66. PMCID: PMC2911516.PubMedGoogle Scholar
  12. 12.
    Fritzsche KH, Laun FB, Meinzer H, Stieltjes B. Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging? Neuroimage. 2010;51(1):242–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Hess CP, Mukherjee P, Han ET, Xu D, Vigneron DB. Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn Reson Med. 2006;56(1):104–17.PubMedCrossRefGoogle Scholar
  15. 15.
    Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23(3):1176–85.PubMedCrossRefGoogle Scholar
  16. 16.
    Sakaie KE, Lowe MJ. An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI. Neuroimage. 2007;34(1):169–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48(4):577–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson AW. Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn Reson Med. 2005;54(5):1194–206.PubMedCrossRefGoogle Scholar
  19. 19.
    Özarslan E, Shepherd TM, Vemuri BC, Blackband SJ, Mareci TH. Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). Neuroimage. 2006;31(3):1086–103.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu Y, Alexander AL. Hybrid diffusion imaging. Neuroimage. 2007;36(3):617–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging—guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg Pediatr. 2004;101(1):66–72.CrossRefGoogle Scholar
  22. 22.
    Mikuni N, Okada T, Enatsu R, Miki Y, Hanakawa T, Urayama S, Kikuta K, Takahashi JA, Nozaki K, Fukuyama H, Hashimoto N. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg. 2007;106(4):593–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Mikuni N, Okada T, Nishida N, Taki J, Enatsu R, Ikeda A, Miki Y, Hanakawa T, Fukuyama H, Hashimoto N. Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg. 2007;106(1):128–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, Giussani C, Cadioli M, Blasi V, Casarotti A, Papagno C, Gupta AK, Gaini S, Scotti G, Falini A. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39(1):369–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Holodny AI, Schwartz TH, Ollenschleger M, Liu WC, Schulder M. Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg. 2001;95(6):1082.PubMedCrossRefGoogle Scholar
  26. 26.
    Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, Kirino T, Kawahara N, Morita A. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg. 2005;102(4):664–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Campbell JS, Siddiqi K, Rymar VV, Sadikot AF, Pike GB. Flow-based fiber tracking with diffusion tensor and q-ball data: validation and comparison to principal diffusion direction techniques. Neuroimage. 2005; 27(4):725–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Berman JI, Chung S, Mukherjee P, Hess CP, Han ET, Henry RG. Probabilistic streamline q-ball tractography using the residual bootstrap. Neuroimage. 2008;39(1):215–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Perrin M, Poupon C, Cointepas Y, Rieul B, Golestani N, Pallier C, Riviere D, Constantinesco A, Le Bihan D, Mangin JF. Fiber tracking in q-ball fields using regularized particle trajectories. Inf Process Med Imaging. 2005;19:52–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Descoteaux M, Deriche R, Knosche TR, Anwander A. Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging. 2009;28(2):269–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Parker GJM, Alexander DC. Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):893–902.PubMedCrossRefGoogle Scholar
  32. 32.
    Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 2008;41(4):1267–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Jeurissen B, Leemans A, Jones DK, Tournier J, Sijbers J. Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp. 2011;32(3):461–79.PubMedCrossRefGoogle Scholar
  34. 34.
    Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A, Barker GJ, Duncan JS. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage. 2003;19(4):1349–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Krishnan R, Raabe A, Hattingen E, Szelenyi A, Yahya H, Hermann E, Zimmermann M, Seifert V. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904–14. discusssion 914-5; 904–14; discusssion 914–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Schulder M, Maldjian JA, Liu WC, Holodny AI, Kalnin AT, Mun IK, Carmel PW. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg. 1998;89(3):412–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Ganslandt O, Buchfelder M, Hastreiter P, Grummich R, Fahlbusch R, Nimsky C. Magnetic source imaging supports clinical decision making in glioma patients. Clin Neurol Neurosurg. 2004;107(1):20–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Nagarajan S, Kirsch H, Lin P, Findlay A, Honma S, Berger MS. Preoperative localization of hand motor cortex by adaptive spatial filtering of magnetoencephalography data. J Neurosurg. 2008;109(2):228–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TP. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg. 2002;97(6):1333–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Engel AK, Moll CK, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci. 2005;6(1):35–47.PubMedCrossRefGoogle Scholar
  41. 41.
    Wieshmann UC, Symms MR, Parker GJ, Clark CA, Lemieux L, Barker GJ, Shorvon SD. Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. J Neurol Neurosurg Psychiatry. 2000;68(4):501–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Nimsky C, Ganslandt O, Hastreiter P, Wang RP, Benner T, Sorensen AG, Fahlbusch R. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures—initial experience. Radiology. 2005;234(1):218–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr. 1998;22(1):139–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Berman J. Diffusion MR tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am. 2009;17(2):205–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Children’s Hospital of Philadelphia, and University of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations