Triglyceride-Rich Lipoproteins

  • Ngoc-Anh Le
  • W. Virgil Brown


Elevated plasma triglycerides (TGs) are an indicator of increased risk of ­arteriosclerotic vascular disease. However, the relationship between atherogenesis and increased levels of specific TG-carrying lipoproteins is complex and ­convoluted. Several primary and secondary disorders cause plasma TG elevations. An increase in the risk of arteriosclerotic disease is observed in some of these disorders. Risk appears to be more strongly associated with concomitant alterations in high-density lipoprotein (HDL) and low-density lipoprotein (LDL) metabolism and with the accumulation of partially digested TG-rich lipoproteins, commonly referred to as “remnant” lipoproteins. In addition, the association of hypertriglyceridemia with other risk factors, such as diabetes mellitus and high blood pressure, causes linkage to atherosclerosis in epidemiologic studies to be less clearcut.


High Blood Pressure Inner Core High Energy Content Remnant Lipoprotein Secondary Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    The Lipid Research Clinics Program Epidemiology Committee: Plasma lipid distributions in selected North American populations: the Lipid Research Clinics Program Prevalence Study. Circulation 1979, 60:427–439.Google Scholar
  2. 2.
    Castelli W, Garrison RJ, Wilson PWF, et al: Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 1986, 256:2835–2838.PubMedCrossRefGoogle Scholar
  3. 3.
    The International Committee for the Evaluation of Hypertriglyceridemia as a Vascular Risk Factor (chaired by Assmann G, Gotto AM Jr, Paoletti R): The hypertriglyceridemias risk and management. Am J Cardiol 1991, 68:1A–42A.CrossRefGoogle Scholar
  4. 4.
    Bainton D, Miller NE, Bolton CH, et al: Plasma triglyceride and high density lipoprotein cholesterol as predictors of ischemic heart disease in British men. Br Heart J 1992, 68:60–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Assmann G, Schulte H: Role of triglycerides in coronary artery disease: lessons from the Prospective Cardiovascular Munster Study. Am J Cardiol 1992, 70:10H–13H.PubMedCrossRefGoogle Scholar
  6. 6.
    Eisenberg S: Lipoprotein abnormalities in hypertriglyceridemia: significance in atherosclerosis. Am Heart J 1987, 113:55–61.CrossRefGoogle Scholar
  7. 7.
    Austin MA: Plasma triglyceride and coronary heart disease. Arterioscler Thromb 1991, 11:2–14.PubMedGoogle Scholar
  8. 8.
    Davis CE, Gordon D, LaRosa J, et al: Correlations of plasma ­high-density lipoprotein cholesterol levels with other plasma lipid and lipoprotein concentrations. The Lipid Research Clinics Program Prevalence Study. Circulation 1980, 62(Suppl IV):IV-24–IV-30.Google Scholar
  9. 9.
    Austin MA, Brunzell JD, Fitch WL, et al: Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis 1990, 10:520–530.PubMedGoogle Scholar
  10. 10.
    Reaven GM: Insulin resistance, hyperinsulinemia, and hypertriglyceridemia in the etiology and clinical course of hypertension. Am J Med 1991, 90:7S–12S.PubMedCrossRefGoogle Scholar
  11. 11.
    Fontbonne A, Eschwege E: Insulin-resistance, hypertriglyceridemia and cardiovascular risk: the Paris Prospective Study. Diabetes Metab 1991, 17:93–95.Google Scholar
  12. 12.
    Kaplan NM: The deadly quartet: upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989, 149:1514–1520.PubMedCrossRefGoogle Scholar
  13. 13.
    Austin MA: Triglycerides, small dense LDL and coronary disease. Atherosclerosis 1994, 109:259.CrossRefGoogle Scholar
  14. 14.
    NIH Consensus Development Panel on Triglyceride, High-Density Lipoprotein, and Coronary Heart Disease: Triglyceride, high-density lipoprotein, and coronary heart disease. JAMA 1993, 269:505–510.CrossRefGoogle Scholar
  15. 15.
    Ameis D, Kobayashi J, Davis RC, et al: Familial chylomicronemia (type I hyperlipoproteinemia) due to a single missense mutation in the lipoprotein lipase gene. J Clin Invest 1991, 87:1165–1170.PubMedCrossRefGoogle Scholar
  16. 16.
    Ma Y, Henderson HE, Murthy VA, et al: A mutation in the human lipoprotein lipase gene as the most common cause of familial chylomicronemia in French Canadians. N Engl J Med 1991, 324:1761–1766.PubMedCrossRefGoogle Scholar
  17. 17.
    Brewer HB Jr, Rader DJ, Hoeg JM, et al: Recent advances in lipoprotein metabolism and the genetic dyslipoproteinemias. Adv Exp Med Biol 1991, 285:237–244.PubMedGoogle Scholar
  18. 18.
    Sniderman A, Brown BG, Stewart BF, et al: From familial combined hyperlipidemia to hyperapoB: unravelling the overproduction of hepatic apolipoprotein B. Curr Opin Lipid 1992, 3:137–142.CrossRefGoogle Scholar
  19. 19.
    Mahley RW, Weisgraber KH, Innerarity TL, et al : Genetic defects in lipoprotein metabolism: elevation of atherogenic lipoproteins caused by impaired catabolism. JAMA 1991, 265:78–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Durrington PN: Secondary hyperlipidemia. Br Med Bull 1990, 46:1005–1024.PubMedGoogle Scholar
  21. 21.
    Fujioka S, Matsuzawa Y, Tokunaga K, et al: Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 1987, 36:54–59.PubMedCrossRefGoogle Scholar
  22. 22.
    Brown WV: Lipoprotein disorders in diabetes mellitus. Med Clin North Am 1994, 78:143–161.PubMedGoogle Scholar
  23. 23.
    Appel G: Lipid abnormalities in renal disease [clinical conference]. Kidney Int 1991, 39:169–183.PubMedCrossRefGoogle Scholar
  24. 24.
    Palella TD, Fox IH: Hyperuricemia and gout. In The Metabolic Basis of Inherited Disorders, edn 6. Edited by Scriver CR, Beaudet AL, Sly WS, et al. New York: McGraw Hill; 1989:965–1006.Google Scholar
  25. 25.
    Hers HG, van Hoof F, de Barsy T: Glycogen storage diseases. In Metabolic Basis of Inherited Disorders, edn 6. Edited by Scriver CR, Beaudet AL, Sly WS, et al. New York: McGraw Hill; 1989:425–452.Google Scholar
  26. 26.
    Pathogenesis of alcohol-induced hypertriglyceridemia. Nutr Rev 1987, 45:215–216.Google Scholar
  27. 27.
    Glueck CJ, Scheel D, Fishback J, et al: Estrogen-induced pancreatitis in patients with previously covert familial type V hyperlipoproteinemia. Metabolism 1972, 21:657–666.PubMedCrossRefGoogle Scholar
  28. 28.
    Davidoff F, Tishler S, Rosoff C: Marked hyperlipidemia and pancreatitis associated with oral contraceptive therapy. N Engl J Med 1973, 289:552–555.PubMedCrossRefGoogle Scholar
  29. 29.
    Marsden J: Hyperlipidemia due to isotretinoin and etretinate: possible mechanisms and consequences. Br J Dermatol 1986, 114:401–407.PubMedCrossRefGoogle Scholar
  30. 30.
    Ames RP: The effects of antihypertensive drugs on serum lipids and lipoproteins. I. Diuretics. Drugs 1986, 32:260–278.PubMedCrossRefGoogle Scholar
  31. 31.
    Hunninghake DB: The effects of cardioselective vasodilating beta-blockers on lipids. Am Heart J 1991, 121:1029–1032.PubMedCrossRefGoogle Scholar
  32. 32.
    Ginsberg HN: Lipoprotein physiology and its relationship to atherogenesis. Endocrinol Metab Clin North Am 1990, 19:211–228.PubMedGoogle Scholar
  33. 33.
    Havel RJ: Role of triglyceride-rich lipoproteins in progression of atherosclerosis [comment]. Circulation 1990, 81:694–696.PubMedGoogle Scholar
  34. 34.
    Austin MA, Breslow JL, Hennekens CH, et al: Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988, 260:1917–1921.PubMedCrossRefGoogle Scholar
  35. 35.
    Sniderman A, Shapiro S, Marpole D, et al: Association of coronary atherosclerosis with hyperapobetalipoproteinemia (increased protein but normal cholesterol levels in human plasma low density [beta] lipoprotein). Proc Natl Acad Sci U S A 1980, 77:605–608.CrossRefGoogle Scholar
  36. 36.
    Hamsten A: Hypertriglyceridemia, triglyceride-rich lipoproteins and coronary heart disease. Clin Endocrinol Metab 1990, 4:895–922.Google Scholar
  37. 37.
    Brewer HB Jr, Gregg RE, Hoeg JM, et al: Apolipoproteins and lipoproteins in human plasma: an overview. Clin Chem 1988, 34:B4–B8.PubMedGoogle Scholar
  38. 38.
    Beisiegel U, Weber W, Ihrke G, et al: The LDL receptor related protein, LRP, is an apolipoprotein E binding protein. Nature 1989, 341:162–164.PubMedCrossRefGoogle Scholar
  39. 39.
    Rubinstein A, Gibson JC, Paterniti JR: The effect of heparin induced lipolysis on the distribution of apolipoprotein E among lipoprotein subclasses. J Clin Invest 1985, 75:710–721.PubMedCrossRefGoogle Scholar
  40. 40.
    Goldberg IJ, Le N-A, Paterniti JR, et al: Effect of acute inhibition of hepatic triglyceride lipase on very low density lipoprotein metabolism in the cynomolgus monkey. J Clin Invest 1982, 70:1184–1192.PubMedCrossRefGoogle Scholar
  41. 41.
    Cortner JA, Le N-A, Coates PM, et al: Determinants of fasting plasma triglyceride levels: metabolism of hepatic and intestinal lipoproteins. Eur J Clin Invest 1991, 22:158–165.CrossRefGoogle Scholar
  42. 42.
    Le N-A, Innis W, Umeakunne K, et al: Accelerated clearance of postprandial lipoproteins with HMG CoA reductase inhibitor. AFCR National Meeting May 4-8. J Invest Med 1995, 43:301A.Google Scholar
  43. 43.
    de Silva H, Lauer SJ, Wang J, et al: Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 1994, 269:2324–2335.PubMedGoogle Scholar
  44. 44.
    Lagrost L, Gandjini H, Athias A, et al: Influence of plasma cholesteryl ester transfer activity on the LDL and HDL distribution profiles in normolipidemic subjects. Arterioscler Thromb 1992, 13:815–825.Google Scholar
  45. 45.
    Kuusi T, Saarinen P, Nikkila EA: Evidence for the role of hepatic lipase in the metabolism of plasma HDL2 in man. Atherosclerosis 1980, 36:589–593.PubMedCrossRefGoogle Scholar
  46. 46.
    Hongmei L, Myron I, Cybulsky MA, et al: An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 1993, 13:197–204.Google Scholar
  47. 47.
    de Gruijter M, Hoogerbrugge N, van Rijn MA, et al: Patients with combined hypercholesterolemia-hypertriglyceridemia shown an increased monocyte-endothelial cell adhesion in vitro: triglyceride level as a major determinant. Metabolism 1991, 40:1119–1121.PubMedCrossRefGoogle Scholar
  48. 48.
    Chung BH, Segrest JP: Cytotoxicity of remnants of triglyceride-rich lipoproteins: an atherogenic insult? Adv Exp Med Biol 1991, 285:341–351.PubMedGoogle Scholar
  49. 49.
    Wang-Iverson P, Gibson JC, Brown WV: Plasma apolipoprotein E secretion by human monocyte-derived macrophages. Biochem Biophys Acta 1985, 834:256–262.PubMedGoogle Scholar
  50. 50.
    Rosenfeld ME, Khoo JC, Miller E, et al: Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. J Clin Invest 1991, 87:90–99.PubMedCrossRefGoogle Scholar
  51. 51.
    David JB, Bowyer DE: Macrophages modify beta-VLDL by proteolysis and enhance subsequent lipid accumulation in arterial smooth muscle cells. Atherosclerosis 1989, 77:203–208.CrossRefGoogle Scholar
  52. 52.
    Mitropoulos KA, Miller GJ, Reeves BE, et al: Factor VII coagulant activity is strongly associated with the plasma concentration of large lipoprotein particles in middle-aged men. Atherosclerosis 1989, 76:203–208.PubMedCrossRefGoogle Scholar
  53. 53.
    Miller GJ, Martin JC, Mitropoulos KA, et al: Factor VII and dietary fat intake. Adv Exp Med Biol 1990, 281:145–149.PubMedGoogle Scholar
  54. 54.
    Hosoai H, Nakamura H: Triglyceride as a risk factor for athero-thrombotic disease through increased plasminogen activator inhibitor. In Current Advances in Triglycerides and Atherosclerosis. Edited by Yamamoto A, Nakamura H, Tsuguhiko N. Osaka: Churchill Livingstone; 1994:115–118.Google Scholar
  55. 55.
    Mehta J, Mehta P, Lawson D, et al: Plasma tissue activator inhibitor levels in coronary artery disease: correlation with age and serum triglyceride concentrations. J Am Coll Cardiol 1987, 9:263–267.PubMedCrossRefGoogle Scholar
  56. 56.
    Mussoni L, Mannucci L, Sirtori M, et al: Hypertriglyceridemia and regulation of fibrinolytic activity. Arterioscler Thromb 1992, 12:19–25.PubMedGoogle Scholar
  57. 57.
    Hiraga T, Murase T, Tsukada T: Blood coagulation and fibrinolysis in patients with hypertriglyceridemia. In Current Advances in Triglycerides and Atherosclerosis. Edited by Yamamoto A, Nakamura H, Tsuguhiko N. Osaka: Churchill Livingstone; 1994:109–114.Google Scholar
  58. 58.
    Zannis VI, Breslow JL: Characterization of a unique human apolipoprotein E variant associated with type III hyperlipoproteinemia. J Biol Chem 1980, 255:1759.PubMedGoogle Scholar
  59. 59.
    Rall SC Jr, Weisgraber KH, Innerarity TL, et al: Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects. Proc Natl Acad Sci U S A 1982, 79:4696.PubMedCrossRefGoogle Scholar
  60. 60.
    Fredrickson DS, Morganroth J, Levy RI: Type III hyperlipoproteinemia: an analysis of two contemporary definitions. Ann Intern Med 1975, 82:150.PubMedGoogle Scholar
  61. 61.
    Goldstein JL, Schrott HG, Hazzard WR, et al: Hyperlipidemia in coronary artery disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973, 2:1544–1568.CrossRefGoogle Scholar
  62. 62.
    Cortner JA, Coates PM, Bennett MJ, et al: Familial combined hyperlipidaemia: use of stable isotopes to demonstrate overproduction of very low-density lipoprotein apolipoprotein B by the liver. J Inherit Metab Dis 1991, 14:915–922.PubMedCrossRefGoogle Scholar
  63. 63.
    Janus CK, Nicoll AM, Turner PR, et al: Kinetic basis of the primary hyperlipidemias: studies of apolipoprotein B turnover in genetically defined subjects. Eur J Clin Invest 1980, 10:161–172.PubMedCrossRefGoogle Scholar
  64. 64.
    Kissebah AH, Alfarsi S, Evans DJ: Low density lipoprotein metabolism in familial combined hyperlipidemia: mechanisms of the multiple lipoprotein phenotypic expression. Arteriosclerosis 1984, 4:614–624.PubMedGoogle Scholar
  65. 65.
    Kesaniemi YA, Vega GL, Grundy SM: Kinetics of apolipoprotein B in normal and hyperlipidemic man: review of current data. In Lipoprotein Kinetics and Modeling. Edited by Berman M, Grundy SM, Howard BV. New York: Academic Press; 1982:181–205.Google Scholar
  66. 66.
    Chait A, Robertson HT, Brunzell JD: Chylomicronemia syndrome in diabetes mellitus. Diabetes Care 1981, 4:343–348.PubMedCrossRefGoogle Scholar
  67. 67.
    DeFronzo RA, Ferrannini E: Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991, 14:173–194.PubMedCrossRefGoogle Scholar
  68. 68.
    Goldschmid MG, Barrett-Connor E, Edelstein SL, et al: Dyslipidemia and ischemic heart disease mortality among men and women with diabetes. Circulation 1994, 89:991–997.PubMedGoogle Scholar
  69. 69.
    Grundy SM, Brewer BH Jr, Cleeman JI, et al: Definition of metabolic syndrome: report of the NHLBI/AHA Conference on scientific issues related to definition. Circulation 2004, 109:433–438.PubMedCrossRefGoogle Scholar
  70. 70.
    Matthews DR, Hosker JP, Rudenski AS, et al: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentration in man. Diabetologia 1985, 28:412–419.PubMedCrossRefGoogle Scholar
  71. 71.
    Bonora E, Zenere M, Branzi P, et al: Influences of body fat and its regional localization on risk factors for atherosclerosis in young men. Am J Epidemiol 1992, 135:1272–1278.Google Scholar
  72. 72.
    Leenan R, van der Kooy K, Seidell JC, et al: Visceral fat accumulation measured by magnetic resonance imaging in relation to serum lipids in obese men and women. Atherosclerosis 1992, 94:171–181.CrossRefGoogle Scholar
  73. 73.
    Carlson LA, Rosenhamer G: Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988, 223:405–418.PubMedCrossRefGoogle Scholar
  74. 74.
    Frick MH, Elo H, Haapa K, et al: Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med 1987, 317:1237–1245.PubMedCrossRefGoogle Scholar
  75. 75.
    Manninen V, Elo O, Frick MH, et al: Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988, 260:641–651.PubMedCrossRefGoogle Scholar
  76. 76.
    Manninen V, Huttunen Jk, Heinonen OP, et al: Relation between baseline lipid and lipoprotein values and the incidence of coronary heart disease in the Helsinki Heart Study. Am J Cardiol 1989, 63:42H–47H.PubMedCrossRefGoogle Scholar
  77. 77.
    Rubins HB, Robins SJ, Collins D, et al. for the VA-HIT Study Group: Gemfibrozil for the secondary prevention of coronary heart disease in men with low-density lipoprotein cholesterol. N Engl J Med 1999, 341:410–418.PubMedCrossRefGoogle Scholar
  78. 78.
    Plenge JK, Hernandez TL, Weil KM, et al: Simvastatin lowers C-reactive protein within 14 days: an effect independent of LDLc reduction. Circulation 2002, 106:1447–1452.PubMedCrossRefGoogle Scholar
  79. 79.
    Schwartz GG, Olson AG, et al. and the MIRACL study investigators: High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndrome in the MIRACL Study. Circulation 2003, 108:1560–1566.PubMedCrossRefGoogle Scholar
  80. 80.
    Ferns GAA: Differential effects of stations on serum CRP levels: implications in recent clinical trials. Atherosclerosis 2003, 169:349–351.PubMedCrossRefGoogle Scholar
  81. 81.
    Karathanasis SK, Norum RA, Zannis VI, JL Breslow VI: Linkage of human apolipoproteins A-I and C-III genes. Nature 1983, 304:371–373.PubMedCrossRefGoogle Scholar
  82. 82.
    Dallinga-Thie GM, Bu X-D, van Linde-Sibenius Trip M, et al: Apolipoprotein A-I/C-III/A-IV gene cluster in familial combined hyperlipidemia: effects on LDL-c and apoB and C-III. J Lipid Res 1996, 37:136–147.PubMedGoogle Scholar
  83. 83.
    Dallinga-Thie GM, van Linde-Sibenius Trip M, Rotter JI, et al: Complex genetic contribution of the apoAI-CIII-AIV gene cluster to familial combined hyperlipidemia: identification of different susceptibility haplotypes. J Clin Invest 1997, 99:953–961.PubMedCrossRefGoogle Scholar
  84. 84.
    Xu C-F, Talmud P, Schuster H, et al: Association between genetic variation at the apo AI-CIII-AIV gene cluster and familial combined hyperlipidemia. Clin Genet 1994, 46:385–397.PubMedCrossRefGoogle Scholar
  85. 85.
    Chen M, Breslow JL, Li W, Leff T: Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J Lipid Res 1994, 35:1918–1924.PubMedGoogle Scholar
  86. 86.
    Gruber PJ, Torres-Rosado A, Wolak ML, Leff T: ApoC-III gene transcription is regulated by a cytokine-inducible NFκB element. Nucleic Acid Res 1994, 22: 2417–2422.PubMedCrossRefGoogle Scholar
  87. 87.
    Reue K, Leff T, Breslow JL: Human apoC-III gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors. J Biol Chem 1988, 263:6857–6864.PubMedGoogle Scholar
  88. 88.
    Ladias JAA, Hadzopoulou-Cladaras M, Kardassis D, et al: Transcriptional regulation of human apolipoprotein genes apoB, apoC-III and apoA-II by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2 and EAR-3. J Biol Chem 1992, 267:15849–15860.PubMedGoogle Scholar
  89. 89.
    Hertz R, Bishara-Shieban J, Bar-Tana J: Mode of action of peroxisome proliferators as hypolipidemic drugs: suppression of apoC-III. J Biol Chem 1995, 270: 13470–13475.PubMedGoogle Scholar
  90. 90.
    Schonfeld G, George PK, Miller J, et al: Apolipoprotein C-II and C-III levels in hyperlipoproteinemia. Metabolism 1979, 28:1001–1010.PubMedCrossRefGoogle Scholar
  91. 91.
    Bukberg P, Le N-A, Gibson JC, et al: Direct measurement of apoC-III specific activity in 125I-labeled VLDL by immunoaffinity chromatography. J Lipid Res 1983, 24:1251–1260.PubMedGoogle Scholar
  92. 92.
    Le N-A, Gibson JC, Ginsberg HN: Independent regulation of plasma apo C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins. J Lipid Res 1988, 29:669–677.PubMedGoogle Scholar
  93. 93.
    Havel RJ, Shore VG, Shore B, Bier DM: Role of specific glycopeptides of human serum lipoproteins in the activation of LPL. Circ Res 1970, 27: 375–381.Google Scholar
  94. 94.
    Brown WV, Baginsky ML: Inhibition of lipoprotein lipase by an apoprotein of human VLDL. Biochem Biophys Res Commun 1972, 46:375–381.PubMedCrossRefGoogle Scholar
  95. 95.
    Ginsberg HN, Le N-A, Goldberg IJ, et al: Apolipoprotein B metabolism in subjects with deficiency of apoC-III and A-I: evidence that apoC-III inhibits catabolism of TG-rich lipoproteins by LPL in vivo. J Clin Invest 1986, 78:1287–1295.PubMedCrossRefGoogle Scholar
  96. 96.
    Ito Y, Azrolan N, O’Connell A, et al: Hypertriglyceridemia as a result of human apoC-III expression in transgenic mouse. Science 1990, 249:790–793.PubMedCrossRefGoogle Scholar
  97. 97.
    Ebara T, Ramakrishnan R, Steiner G, Shachter NS: Chylomicronemia due to apoC-III overexpression in apoE-null mice: apoC-III induced hypertriglyceridemia is not mediated by effects on apoE. J Clin Invest 1997, 99:2672–2681.PubMedCrossRefGoogle Scholar
  98. 98.
    Maeda N, Li H, Lee D, et al: Targeted disruption of the apoC-II gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 1994, 269:23610–23616.PubMedGoogle Scholar
  99. 99.
    Staels B, Vu-Dac N, Kosykh VA, et al: Fibrates downregulate apoC-III expression independent of induction of peroxisomal acyl CoA oxidase: a potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 1995, 95:705–712.PubMedCrossRefGoogle Scholar
  100. 100.
    Shelburne F, Hanks J, Myers W, Quarfordt S: Effect of apoproteins on hepatic uptake of triglyceride emulsions in the rat. J Clin Invest 1980, 65:652–658.PubMedCrossRefGoogle Scholar
  101. 101.
    Windler E, Havel RJ: Inhibitory effect of C apolipoproteins from rats and humans on the uptake of TG-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res 1985, 26:556–565.PubMedGoogle Scholar
  102. 102.
    Kowal RC, Herz J, Weisgraber KH, et al: Opposing effect of apoE and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem 1990, 265:10771–10779.PubMedGoogle Scholar
  103. 103.
    Rensen PCN, Herijgers N, Netscher MH, et al: Particle size determines the specificity of apoE-containing TG-rich emulsions for the LDL receptor versus hepatic remnant receptor in vivo. J Lipid Res 1997, 38:1070–1084.PubMedGoogle Scholar
  104. 104.
    Breyer ED, Le N-A, Li X, et al: ApoC-III displacement of apoE from VLDL: effect of particle size. J Lipid Res 1999, 40:1875–1882.PubMedGoogle Scholar
  105. 105.
    Hazzard WR, Bierman EL: Delayed clearance of chylomicron ­remnants following vitamin A-containing oral fat loads in borad-b-disease (type III hyperlipoproteinemia). Metabolism 1976, 25:777–801.PubMedCrossRefGoogle Scholar
  106. 106.
    Bergeron N, Havel RJ: Prolonged postprandial responses of lipids and apolipoproteins in TG-rich lipoproteins in individuals expressing an e4 allele. J Clin Invest 1996, 7:65–72.CrossRefGoogle Scholar
  107. 107.
    Dallongeville J, Lussier-Cacan S, Davignon J: Modulation of plasma TG levels by apoE phenotype: a meta-analysis. J Lipid Res 1992, 33: 447–454.PubMedGoogle Scholar
  108. 108.
    Lenzen HJ, Assman G, Buchwalsky R, Schulte H: Association of apoE polymorphism, LDL, and CAD. Clin Chem 1986, 32:778–781.PubMedGoogle Scholar
  109. 109.
    Kuusi T, Nieminen MS, Ehnholm C, et al: ApoE polymorphism and coronary artery disease: increased prevalence of E4 in angiographically verified coronary patients. Arteriosclerosis 1989, 9: 237–241.PubMedGoogle Scholar
  110. 110.
    Hixson JE for the PDAY research group: ApoE polymorphism affect atherosclerosis in young males. Arterioscl Thromb 1991, 11:1237–1244.Google Scholar
  111. 111.
    Van Bockxmeer FM, Mamotte CD: Apolipoprotein e4 homozygosity in young men with coronary artery disease. Lancet 1992, 340: 879–880.PubMedCrossRefGoogle Scholar
  112. 112.
    Wilson PWF, Myers RH, Larson MG, et al: ApoE alleles, dyslipidemia, and coronary heart disease: the Framingham Offspring Study. JAMA 1994, 272:1666–1671.PubMedCrossRefGoogle Scholar
  113. 113.
    Levy RI, Brensike JF, Epstein SE, et al: The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: results of the NHLBI Type II Coronary Intervention Study. Circulation 1984, 69:325–337.PubMedGoogle Scholar
  114. 114.
    Phillips NR, Waters D Havel RJ: Plasma lipoproteins and progression of coronary artery disease of coronary artery disease evaluated by angiography and clinical events. Circulation 1993, 88: 2762–2770.PubMedGoogle Scholar
  115. 115.
    Groot PHE, van Stiphout WAHJ, Krauss XH, et al: Postprandial lipoprotein metabolism in normolipidemic man with and without coronary artery disease. Arterioscler Thromb 1991, 11:653–662.PubMedGoogle Scholar
  116. 116.
    Sharrett AR, Chambless LE, Heiss G, et al: Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid atherosclerosis in middle-aged men and women: the ARIC Study. Arterioscler Thromb Vasc Biol 1995, 15: 2122–2129.PubMedGoogle Scholar
  117. 117.
    Watts GF, Lewis B, Brunt JNH, et al: Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine in the St. Thomas Atherosclerosis Regression Study (STARS). Lancet 1992, 339:563–569.PubMedCrossRefGoogle Scholar
  118. 118.
    Blankenhorn DH, Alaupovic P, Wickham E, et al: Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts: lipids and nonlipid factors. Circulation 1990, 81:470–476.PubMedGoogle Scholar
  119. 119.
    Hodis HN, Mack WJ, Azen SP, et al: Triglyceride- and cholesterol-rich lipoproteins have a differential effect on mild, moderate, and severe lesion progression as assessed by quantitative coronary angiography in a controlled trial of lovastatin. Circulation 1994, 90:42–49.PubMedGoogle Scholar
  120. 120.
    Manninen V, Elo MO, Frick MH, et al: Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988, 260: 641–651.PubMedCrossRefGoogle Scholar
  121. 121.
    Ericsson C-G: Results of the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT) and an update on trials now in progress. Eur Heart J 1998, 19(Suppl H): H37–H41.PubMedGoogle Scholar
  122. 122.
    Austin MA: Epidemiology of hypertriglyceridemia and cardiovascular disease. Am J Cardiol 1999, 83:13F–16F.PubMedCrossRefGoogle Scholar
  123. 123.
    Criqui MH, Heiss G, Cohn R, et al: Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 1993, 328:1220–1225.PubMedCrossRefGoogle Scholar
  124. 124.
    Castelli WP: The triglyceride issue: a view from Framingham. Am Heart J 1986, 112: 432–437.PubMedCrossRefGoogle Scholar
  125. 125.
    Miller M: Is hypertriglyceridemia an independent risk factor for coronary heart disease? The epidemiological evidence. Eur Heart J 1998, 19: H18–H22.PubMedGoogle Scholar
  126. 125.
    Dominiczak MH: Glucose homeostasis and fuel metabolism. In Medical Biochemistry. Edited by Baynes J, Dominiczak MH. Mosby: London; 1999; 243–266.Google Scholar
  127. 126.
    Eisenberg S, Sehayak E: Remnant lipoproteins and their metabolism. Baillieres Endocrinol Metab 1995, 9:739–753.CrossRefGoogle Scholar
  128. 127.
    Fantone JC, Ward PA: Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 1982, 107:397–418.Google Scholar
  129. 128.
    Esterbauer H, Jurgens G, Quehenberger O, Koller E: Autooxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987, 28:495–509.PubMedGoogle Scholar
  130. 130.
    Steinbrecher UP: Oxidation of human low-density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 1987, 262:3603–3608.PubMedGoogle Scholar
  131. 131.
    Le N-A, Li X, Sung K, Brown WV: Evidence for the in vivo generation of oxidatively modified epitopes in patients with documented CAD. Metabolism 2000, 49:1271–1277.PubMedCrossRefGoogle Scholar
  132. 132.
    Gradek Q, Harris M, Yahia N, et al: Polyunsaturated fatty acids acutely suppress antibodies to malondialdehyde-modified lipoproteins in patients with vascular disease. Am J Cardiol 2004, 93:881–885.PubMedCrossRefGoogle Scholar
  133. 133.
    Steinberg D, Parthasarathy S, Carew TE, et al: Beyond cholesterol: modifications of LDL that increase its atherogenicity. N Engl J Med 1989, 320:915–924.PubMedCrossRefGoogle Scholar
  134. 134.
    Goldstein JL, Ho YK, Basu SK, Brown MS: Binding sites on macrophages that mediates uptake and degradation of acetylated LDL, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979, 76:333–337.PubMedCrossRefGoogle Scholar
  135. 135.
    Fogelman AM, Schechter I, Seager J: Malondialdehyde alteration of LDL leads to cholesteryl ester accumulation in human monocyte macrophages. Proc Natl Acad Sci U S A 1980, 77:2214–2218.PubMedCrossRefGoogle Scholar
  136. 136.
    Morel DW, DiCorleto PE, Chisolm GM: Endothelial and smooth muscle cells alter LDL in vitro by free radical oxidation. Arteriosclerosis 1984, 4:357–364.PubMedGoogle Scholar
  137. 137.
    Nakajima K, Nakano T, Tanaka A: The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects of oxidized LDL and remnant lipoproteins in plasma. Clin Chim Acta 2006, 367:36–47.PubMedCrossRefGoogle Scholar
  138. 138.
    Mabile L, Salvayre R, Bonnafe M-J, Negre-Salvayre A: Oxidizability and subsequent cytotoxicity of chylomicrons to monocytic U937 and endothelial cells are dependent on dietary fatty acid composition. Free Rad Biol Med 1995, 19:599–607.PubMedCrossRefGoogle Scholar
  139. 139.
    Esterbauer H, Striegl G, Puhl H, Rotheneder M: Continuous monitoring of in vitro oxidation of human LDL. Free Rad Biol Med 1989, 6:67–75.Google Scholar
  140. 140.
    Maggi E, Chiesa R, Melissano G, et al: LLD oxidation in patients with severe carotid atherosclerosis: a study of in vitro and in vivo oxidation markers. Arterioscl Thromb 1994, 14:1892–1899.PubMedGoogle Scholar
  141. 141.
    Hendrickson A, McKinstry LA, Lewis JK, et al: Ex vivo measures of LDL oxidative susceptibility predict carotid artery disease. Atherosclerosis 2005. 179:147–153.PubMedCrossRefGoogle Scholar
  142. 142.
    Nielsen NS, Pedersen A, Sandstrom B, et al: Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoproteins concentrations and on lipoprotein ­oxidation susceptibility. Br J Nutr 2002, 87:489–499.PubMedCrossRefGoogle Scholar
  143. 143.
    Hammond MG, Fisher WR: The characterization of a discrete series of LDL in the disease hyper-prebeta-lipoproteinemia. J Biol Chem 1971, 246:5454–5465.PubMedGoogle Scholar
  144. 144.
    Sniderman A, Shapiro S, Marpole D, et al: Association of coronary atherosclerosis with hyperapobetalipoproteinemia [increased protein but normal cholesterol levels in human plasma low-­density (beta) lipoproteins]. Proc Natl Acad Sci U S A 1980, 77:604–608.PubMedCrossRefGoogle Scholar
  145. 145.
    Shen NNS, Krauss RM, Lindgren FT, Forte TM: Heterogeneity of serum LDL in normal human subjects. J Lipid Res 1981, 22:236–244.PubMedGoogle Scholar
  146. 146.
    Krauss RM, Burke DJ: Identification of multiple subclasses of plasma LDL in normal humans. J Lipid Res 1982, 23:97–104.PubMedGoogle Scholar
  147. 147.
    Marcovina SM, Albers JJ, Wijsman E, et al: Differences in Lp(a) concentrations and apo(a) polymorphs between black and white Americans. J Lipid Res 1996, 37:2569–2585.PubMedGoogle Scholar
  148. 148.
    Brunner C, Kraft H-G, Utermann G, Muller H-J: Cys 4057 of apo(a) is essential for Lp(a) assembly. Proc Natl Acad Sci U S A 1993, 90:11643–11647.PubMedCrossRefGoogle Scholar
  149. 149.
    Chiesa G, Hobbs HH, Koschinsky ML, et al: Reconstitution of Lp(a) by infusion of human LDL into transgenic mice expressing human apo(a). J Biol Chem 1992, 267:24369–24374.PubMedGoogle Scholar
  150. 150.
    Pederson TR, Olsson AG, Faergemen O, et al: Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S). Circulation 1998, 97:1454–1460.Google Scholar
  151. 151.
    Sniderman AD, Furberg CD, Keech A, et al: Apolipoproteins versus lipids as indices of coronary risk and as targets for statin therapy treatment. Lancet 2003, 361:777–780.PubMedCrossRefGoogle Scholar
  152. 152.
    Clarenbach JJ, Grundy SM, Palacio N, Vega GL: Relationship of apolipoprotein B levels to the number of risk factors for metabolic syndrome. J Invest Med 2007, 55:237–247.CrossRefGoogle Scholar
  153. 153.
    Jeyarajah EJ, Cromwell WC, Otvos JD: Lipoprotein particle analysis by NMR spectroscopy. Clin Lab Med 2006, 26:847–870.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ngoc-Anh Le
    • 1
    • 2
  • W. Virgil Brown
    • 3
  1. 1.Department of Medicine, Division of Endocrinology, Metabolism, and LipidsEmory UniversityAtlantaUSA
  2. 2.Veterans Affairs Medical CenterAtlantaUSA
  3. 3.Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Medical Specialty Service Line, Atlanta Veterans Affairs Medical CenterEmory UniversityAtlantaUSA

Personalised recommendations