Feedback Control of Microflows

  • Mike Armani
  • Zach Cummins
  • Jian Gong
  • Pramod Mathai
  • Roland Probst
  • Chad Ropp
  • Edo Waks
  • Shawn Walker
  • Benjamin Shapiro
Chapter

Abstract

This chapter gives an overview of methods we have developed and experimental results we have achieved for precision feedback control of flows and objects inside microfluidic systems. Essentially, we are doing flow control, but flow control on the microscale, and further even to nanoscale accuracy, to precisely and robustly manipulate liquid packets, particles (e.g., cells and quantum dots), and micro- and nanoobjects (e.g., nanowires). Target applications include methods to miniaturize the operations of a biological laboratory (lab-on-a-chip), e.g., presenting pathogens to on-chip sensing cells or extracting cells from messy biosamples such as saliva, urine, or blood; as well as nonbiological applications such as deterministically placing quantum dots on photonic crystals to make multidot quantum information systems.

References

  1. 1.
    M.A. Northrup, et al. A Miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry, 1998. 70(5): p. 918–922.Google Scholar
  2. 2.
    R. Jabeen, et al. Capillary electrophoresis and the clinical laboratory. Electrophoresis. 27(12): p. 2413–2438.Google Scholar
  3. 3.
    D. Figeys. Adapting arrays and Lab-on-a-chip technology for proteomics. Proteomics, 2002. 2(4): p. 373–382.Google Scholar
  4. 4.
    J. Seo, et al. Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Applied Physics Letters, 2004. 84(11): p. 1973–1975.Google Scholar
  5. 5.
    G. Spera. Implantable pumps improve drug deliver, strengthen weak hearts. Medical Devices & Diagnostic Industry Magazine, 1997.Google Scholar
  6. 6.
    M. Gad-el-Hak, ed. MEMS: Design and fabrication 2ed. The MEMS handbook. Vol. 2. 2006, CRC Press, Taylor and Francis Group. 664.Google Scholar
  7. 7.
    C.T. Leondes, ed. Fabrication Techniques for MEMS/NEMS. MEMS/NEMS handbook. 2006, Springer: New York, NY.Google Scholar
  8. 8.
    K.E. Herold and A. Rasooly, eds. Fabrication and microfluidics. Lab on a chip technology. Vol. 1. 2009, Caister Academic Press Norfolk, UK. 409.Google Scholar
  9. 9.
    C.A. Mack. Fundamental principles of optical lithography: The science of microfabrication. 2008, West Sussex, England: John Wiley and Sons Ltd. 534.Google Scholar
  10. 10.
    M. Meyyappan. A review of plasma enhanced chemical vapour deposition of carbon nanotubes. Journal of Physics D-Applied Physics, 2009. 42(21).Google Scholar
  11. 11.
    R. Bogwe. Self-assembly: a review of recent developments. Assembly Automation, 2008. 28(3): p. 211–215.Google Scholar
  12. 12.
    J.C. Huie. Guided molecular self-assembly: a review of recent efforts. Smart Materials & Structures, 2003. 12(2): p. 264–271.Google Scholar
  13. 13.
    S.D. Minteer, ed. Microfluidic Techniques: Reviews and protocols (Methods in molecular biology). Methods in molecular biology. Vol. 321. 2005, Humana Press: Clifton, New Jersey. 247.Google Scholar
  14. 14.
    P. Kim, et al. Soft lithography for microfluidics: a review. Biochip Journal, 2008. 2(1): p. 1–11.Google Scholar
  15. 15.
    R.L. Panton. Incompressible flow. 2 ed. 1996, New York, NY: John Wiley & Sons, Inc.Google Scholar
  16. 16.
    G.E. Karniadakis and A. Beskok. Micro flows: Fundamentals and simulation. 2001, New York, NY: Springer Verlag.Google Scholar
  17. 17.
    A. Beskok. Physical challenges and simulation of micro fluidic transport. in 39th Aerospace Sciences Meeting & Exhibit. 2001. Reno, Nevada: AIAA.Google Scholar
  18. 18.
    M. Gad-el-Hak. The fluid mechanics of microdevices – The freeman scholar lecture. Journal of Fluids Engineering, 1999. 121: p. 5.Google Scholar
  19. 19.
    S. Walker and B. Shapiro. Modeling the fluid dynamics of electro-wetting on dielectric (EWOD). Journal of Micro-Electro-Mechanical Systems, 2006. 15(4): p. 986–1000.Google Scholar
  20. 20.
    S. Chaudhary and B. Shapiro. Arbitrary steering of multiple particles at once in an electroosmotically driven microfluidic system. IEEE Transactions on Control Systems Technology, 2006. 14(4): p. 669–680.Google Scholar
  21. 21.
    L. Pauling. General chemistry. 1970, New York: Dover Publications, Inc.Google Scholar
  22. 22.
    S.R. Quake and T.M. Squires. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005. bf 77(3): p. 977–1026.Google Scholar
  23. 23.
    M.H. Oddy, J.G. Santiago, and J.C. Mikkelson. Electrokinetic instability micromixing. Analytical Chemistry, 2001. 73(24): p. 5822–32.Google Scholar
  24. 24.
    J. Fowler, H. Moon, and C.J. Kim. Enhancement of mixing by droplet-based microfluidics. IEEE Conf. MEMS, Las Vegas, NV, 2002: p. 97–100.Google Scholar
  25. 25.
    I. Glasgow and N. Aubry. Enhancement of microfluidic mixing using time pulsing. Lab on a Chip, 2003. 3(2): p. 114–120.Google Scholar
  26. 26.
    K.J. Astrom and R.M. Murray. Feedback systems: An introduction for scientists and engineers, 2006. Princeton University Press. 2008.Google Scholar
  27. 27.
    J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control theory. 1992, New York, NY: Macmillan Publishing Company.Google Scholar
  28. 28.
    R.M. Murray, et al. Control in an information rich world. 2002, Air Force Office of Scientific Research (AFOSR).Google Scholar
  29. 29.
    F. Mugele and J. Baret. Electrowetting: from basics to applications. journal of physics: condensed matter, 2005. 17: p. R705–R774.Google Scholar
  30. 30.
    J. Lee, et al. Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensor Actuat. A-Phys, 2002. 95: p. 269.Google Scholar
  31. 31.
    S. Fusayo, et al. Electrowetting on dielectrics (EWOD): Reducing voltage requirements for microfluidics. Polymeric Materials: Science & Engineering, 2001. 85: p. 12–13.Google Scholar
  32. 32.
    H. Ren, et al. Dynamics of electro-wetting droplet transport. Sensors and Actuators B-Chemical, 2002. 87(1): p. 201–206.CrossRefGoogle Scholar
  33. 33.
    E. Seyrat and R.A. Hayes. Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting. Journal of Applied Physics, 2001. 90(3).Google Scholar
  34. 34.
    R.A. Hayes and B.J. Feenstra. Video-speed electronic paper based on electrowetting. Nature, 2003. 425(6956): p. 383–385.Google Scholar
  35. 35.
    T. Roques-Carmes, R.A. Hayes, and L.J.M. Schlangen. A physical model describing the electro-optic behavior of switchable optical elements based on electrowetting. Journal of Applied Physics, 2004. 96(11): p. 6267–6271.Google Scholar
  36. 36.
    T. Roques-Carmes, et al. Liquid behavior inside a reflective display pixel based on electrowetting. Journal of Applied Physics, 2004. 95(8): p. 4389–4396.Google Scholar
  37. 37.
    B. Berge and J. Peseux. Variable focal lens controlled by an external voltage: An application of electrowetting. European Physical Journal E, 2000. 3(2): p. 159–163.Google Scholar
  38. 38.
    C. Quilliet and B. Berge. Electrowetting: a recent outbreak. Current Opinion in Colloid & Interface Science, 2001. 6(1): p. 34–39.Google Scholar
  39. 39.
    S.K. Cho, H. Moon, and C.J. Kim. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003. VOL. 12(NO. 1): p. 70–80.Google Scholar
  40. 40.
    M.G. Pollack, R.B. Fair, and A.D. Shenderov. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 2000. 77(11).Google Scholar
  41. 41.
    H.J.J. Verheijen and W.J. Prins. Reversible electrowetting and trapping of charge: Model and experiments. Langmuir, 1999. 15: p. 6616–6620.Google Scholar
  42. 42.
    B. Berge. Electrocapillarity and wetting of insulator films by water. Comptes Rendus de l Academie des Sciences Series II, 1993. 317(2): p. 157–163.Google Scholar
  43. 43.
    B. Shapiro, et al. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. Journal of Applied Physics, 2003. 93(9).Google Scholar
  44. 44.
    M. Armani, et al. Control of micro-fluidic systems: Two examples, results, and challenges. International Journal of Robust and Nonlinear Control., 2005. 15(16): p. 785–803.Google Scholar
  45. 45.
    S.W. Walker, B. Shapiro, and R.H. Nochetto. Electrowetting with contact line pinning: Computational modeling and comparisions with experiments. Physics of Fluids, 2009. 23(10): p. 102103.Google Scholar
  46. 46.
    K. Zhou, J.C. Doyle, and K. Glover. Robust and optimal control. 1996: Prentice Hall, New Jersey.Google Scholar
  47. 47.
    A. Isidori. Nonlinear control systems. 3 ed. Communications and control engineering. 1995: Springer.Google Scholar
  48. 48.
    G. Lippmann. Relation entre les phenomenes electriques et capillaires. Ann. Chim. Phys., 1875. 5: p. 494–549.Google Scholar
  49. 49.
    R.F. Probstein. Physicochemical Hydrodynamics: An introduction. 2 ed. 1994, New York: John Wiley and Sons, Inc.Google Scholar
  50. 50.
    P.C. Hiemenz and R. Rajagopalan. Principles of colloid and surface chemistry. 3 ed. 1997, New York, Basel, Hong Kong: Marcel Dekker, Inc.Google Scholar
  51. 51.
    R.P. Feynman, R.B. Leighton, and M. Sands. The feynman lectures on physics. 1964: Addison-Wesley Publishing Company.Google Scholar
  52. 52.
    S.W. Walker. Modeling, simulating, and controlling the fluid dynamics of electro-wetting on dielectric, in aerospace engineering. 2007, University of Maryland: College Park.Google Scholar
  53. 53.
    H.W. Lu, et al. A diffuse interface model for electrowetting droplets in a hele-shaw cell. J. Fluid Mech, 2007. 590: pp. 411–435.MATHGoogle Scholar
  54. 54.
    H.S. Hele-Shaw. The flow of water. Nature, 1898. 58: p. 34–35.Google Scholar
  55. 55.
    G.K. Batchelor. An Introduction to fluid dynamics. 1967: Cambridge University Press.Google Scholar
  56. 56.
    M.P. do Carmo. Differential geometry of curves and surfaces. 1976, Upper Saddle River, New Jersey: Prentice Hall.Google Scholar
  57. 57.
    T.D. Blake. The physics of moving wetting lines. Journal of Colloid and Interface Science, 2006. 299: p. 1–13.Google Scholar
  58. 58.
    S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. 2003: Springer-Verlag New York.Google Scholar
  59. 59.
    S.A. Sethian. Level set methods & fast marching methods. 2 ed. 1999: Cambridge University Press.Google Scholar
  60. 60.
    R. Caiden, R. Fedkiw, and C. Anderson. A numerical method for two phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys., 2001. 166: p. 1–27.Google Scholar
  61. 61.
    P. Smereka. Semi-implicit level set methods for curvature and surface diffusion motion. Journal of Scientific Computing, 2003. 19(1–3): p. 439–456.Google Scholar
  62. 62.
    W.J. Rider and D.B. Kothe. Stretching and tearing interface tracking methods, in 12th AIAA CFD Conference. 1995.Google Scholar
  63. 63.
    H.C. Kuhlmann and H.J. Rath. Free surface flows 1ed. CISM courses and lectures, international centre for mechanical sciences. Vol. 39, New York, NY: Springer. 300.Google Scholar
  64. 64.
    D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, 2002. 183: p. 83.Google Scholar
  65. 65.
    F. Losasso, F. Gibou, R. Fedkiw. Simulating water and smoke with an octree data structure. in ACM Trans. Graph. (SIGGRAPH Proc.). 2004.Google Scholar
  66. 66.
    X. Yang, et al. An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. Journal of Computational Physics 2006. 217(2): p. 364–394MATHGoogle Scholar
  67. 67.
    S.W. Walker. A hybrid variational-level set approach to handle topological changes, in mathematics. 2007, University of Maryland: College Park.Google Scholar
  68. 68.
    C.J. Kim. Micropumping by electrowetting. in Int. mechanical engineering congress and exposition, New York, NY, IMECE2001/HTD-24200. 2001.Google Scholar
  69. 69.
    V. Srinivasan, V. Pamula, M. Pollack, and R. Fair. A digital microfluidic biosensor for multianalyte detection. in Proceedings of the IEEE 16th Annual International Conference on Micro Electro Mechanical Systems. 2003.Google Scholar
  70. 70.
    P. Paik, V.K. Pamula, and R.B. Fair. Rapid droplet mixers for digital microfluidic systems. Lab on a Chip, 2003. 3: p. 253–259.Google Scholar
  71. 71.
    S.K. Cho, H. Moon, J. Fowler, S.K. Fan, and C.J. Kim. Splitting a liquid droplet for electrowetting-based microfluidics. in Int. mechanical engineering congress and exposition, New York, NY, IMECE2001/MEMS-23831. 2001.Google Scholar
  72. 72.
    S. Walker and B. Shapiro. A control method for steering individual particles inside liquid droplets actuated by electrowetting. Lab on a Chip, 2005. 12(1): p. 1404–1407.Google Scholar
  73. 73.
    F.L. Lewis, and V.L. Syrmos. Optimal control. 2nd ed. 1995, New York, NY: Wiley-Interscience. 560.Google Scholar
  74. 74.
    K.W. Morton, and D.F. Mayers. Numerical solution of partial differential equations. 1994: Cambridge University Press. 239.Google Scholar
  75. 75.
    G. Strang. Linear algebra and its applications. 3 ed. 1988, New York, NY: Brooks Cole. 520.Google Scholar
  76. 76.
    E.C. Zachmanoglou and D.W. Thoe. Introduction to partial differential equations with applications. 1986, New York, NY: Dover Publications, Inc.Google Scholar
  77. 77.
    A. Ralston, and P. Rabinowitz. A first course in numerical analysis. 2nd ed. 2001, Mineola, NY: Dover.Google Scholar
  78. 78.
    L. Jauffred, A.C. Richardson, and L.B. Oddershede. Three-dimensional optical control of individual quantum dots. Nano Letters. 8(10): p. 3376–3380.Google Scholar
  79. 79.
    A. Ashkin, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters. 11(5): p. 288–290.Google Scholar
  80. 80.
    C. Pei-Yu, et al. Light-actuated AC electroosmosis for nanoparticle manipulation. Microelectromechanical Systems, Journal of. 17(3): p. 525–531.Google Scholar
  81. 81.
    A.H.J. Yang, et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature. 457(7225): p. 71–75.Google Scholar
  82. 82.
    A. Ashkin. History of optical trapping and manipulation of small-neutral particles, atoms, and molecules. IEEE Journal on Selected Topics in Quantum Electronics, 2000. 6(6): p. 841–856.Google Scholar
  83. 83.
    M. Armani, et al. Using feedback control and micro-fluidics to independently steer multiple particles. Journal of Micro-Electro-Mechanical Systems, 2006. 15(4): p. 945–956.Google Scholar
  84. 84.
    C. Ropp, et al. Manipulating quantum dots to nanometer precision by control of flow. Nano Letters, 2010. 10(7): p. 2525–2530.Google Scholar
  85. 85.
    K.C. Neuman and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Meth. 5(6): p. 491–505.Google Scholar
  86. 86.
    H. Zhang and K.K. Liu. Optical tweezers for single cells. Journal of the Royal Society, Interface/the Royal Society. 5(24): p. 671–690.Google Scholar
  87. 87.
    F. Qian, et al. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics. Review of Scientific Instruments. 75 (9): p. 2937–2942.Google Scholar
  88. 88.
    R.Probst, B.Shapiro, 3-dimensional electrokinetic tweezing: Device design, modeling, and control algorithms, Journal of Micromechanics and Microengineering, 2011 21(2)Google Scholar
  89. 89.
    C. Ropp, et al. Positioning and immobilization of individual quantum dots with nanoscale precision. Nano Letters, 2010. 10 p. 4673–4679.Google Scholar
  90. 90.
    L.E. Locascio, C.E. Perso, and C.S. Lee. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. Journal of Chromotography A, 1999. 857: p. 275–284.Google Scholar
  91. 91.
    D.J. Harrison, et al. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science, 1993. 261(5123): p. 895–897.Google Scholar
  92. 92.
    A. Manz, et al. Electroosmotic pumping and electrophoretic separations for miniaturized chemical-analysis systems. Journal of Micromechanics and Microengineering, 1994. 4(4): p. 257–265.Google Scholar
  93. 93.
    W. Korohoda and A. Wilk. Cell electrophoresis — a method for cell separation and research into cell surface properties. Cellular & Molecular Biology Letters. 13(2): p. 312–326.Google Scholar
  94. 94.
    J.N. Mehrishi and J. Bauer. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis. 23(13): p. 1984–1994.Google Scholar
  95. 95.
    G.G. Slivinsky, et al. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis. 18(7): p. 1109–1119.Google Scholar
  96. 96.
    F. Schonfeld. CμFD – Case study: Flow patterning by phase-shifted electroosmotic flows, in comsol user’s conference 2006: Frankfurt, Germany.Google Scholar
  97. 97.
    S. Chaudhary and B. Shapiro. Arbitrary steering of multiple particles at once in an electroosmotically driven micro fluidic system. IEEE Trans. on Control Systems Technologies, 2005: 14669–680.Google Scholar
  98. 98.
    T. Zhou, et al. Time-dependent starting profile of velocity upon application of external electrical potential in electroosmotic driven microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 277 (1–3): p. 136–144.Google Scholar
  99. 99.
    D. Yan, et al. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. The Journal of Chemical Physics. 124(2): p. 021103–4.Google Scholar
  100. 100.
    M.A. Henderson. The interaction of water with solid surfaces: fundamental aspects revisited. Surface Science Reports, 2002. 46(1–8): p. 1–308.Google Scholar
  101. 101.
    J. Lyklema, et al. Fundamentals of interface and colloid science.Google Scholar
  102. 102.
    M. Armani, et al. Using feedback control and micro-fluidics to steer individual particles. in 18th IEEE International Conference on Micro Electro Mechanical Systems. 2005. Miami, Florida.Google Scholar
  103. 103.
    I. Rodriguez and N. Chandrasekhar. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices. Electrophoresis, 2005. 26(6): p. 1114–1121.Google Scholar
  104. 104.
    A. Badolato, et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science. 308(5725): p. 1158–1161.Google Scholar
  105. 105.
    K. Hennessy, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature. 445(7130): p. 896–899.Google Scholar
  106. 106.
    D. Englund, et al. Controlling cavity reflectivity with a single quantum dot. Nature. 450(7171): p. 857–861.Google Scholar
  107. 107.
    A.V. Akimov, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature. 450(7168): p. 402–406.Google Scholar
  108. 108.
    D.E. Chang, et al. A single-photon transistor using nanoscale surface plasmons. Nat Phys. 3(11): p. 807–812.Google Scholar
  109. 109.
    Y. Akhane, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003. 425: p. 944–947.Google Scholar
  110. 110.
    Q. Zhang, et al. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot. Opt. Express. 16(24): p. 19599, 19592–19599, 19592.Google Scholar
  111. 111.
    J. Liu, et al. Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays. Lab on a Chip. 9(9): p. 1301–1305.Google Scholar
  112. 112.
    J.T. Fourkas and L. Li. Multiphoton polymerization. Mater. Today, 2007. 10(6): p. 30–37.Google Scholar
  113. 113.
    R.E. Thompson, D.R. Larson, and W.W. Webb. Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal, 2002. 82(5): p. 2775–2783.Google Scholar
  114. 114.
    L.J. Li and J.T. Fourkas. Multiphoton polymerization. Materials Today, 2007. 10(6): p. 30–37.Google Scholar
  115. 115.
    P. Mathai, A. Berglund, A. Liddle, B. Shapiro, Simultaneous positioning and orientation of a single nano-object by flow control, New Journal of Physics, 13: p. 013027, 19 January 2011.Google Scholar
  116. 116.
    B. Shapiro, et al. Control to concentrate drug-coated magnetic particles to deep-tissue tumors for targeted cancer chemotherapy. in 46th IEEE Conference on Decision and Control. 2007. New Orleans, LA.Google Scholar
  117. 117.
    B. Shapiro, et al. Dynamic control of magnetic fields to focus drug-coated nano-particles to deep tissue tumors, in 7th International Conference on the Scientific and Clinical Applications of Magnetic Carriers. 2008: Vancouver, British Columbia.Google Scholar
  118. 118.
    B. Shapiro. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. Journal of Magnetism and Magnetic Materials, 2009. 321(10): p. 1594–1599.Google Scholar
  119. 119.
    A.Komaee and B.Shapiro, Magnetic steering of a distributed ferrofluid towards a deep target with minimal spreading, In 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Dec 2011. Orlando, FL.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mike Armani
    • 1
    • 2
  • Zach Cummins
    • 2
  • Jian Gong
    • 3
  • Pramod Mathai
    • 4
  • Roland Probst
    • 2
  • Chad Ropp
    • 5
  • Edo Waks
    • 6
  • Shawn Walker
    • 7
  • Benjamin Shapiro
    • 8
  1. 1.Pathogenetics Unit, Laboratory of PathologyNational Cancer InstituteBethesdaUSA
  2. 2.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  3. 3.Micromanufacturing LaboratoryUniversity of CaliforniaLos AngelesUSA
  4. 4.Aerospace EngineeringUniversity of MarylandCollege ParkUSA
  5. 5.Electrical EngineeringUniversity of MarylandCollege ParkUSA
  6. 6.Electrical Engineering & Institute for Research in Electronics and Applied Physics (IREAP)University of MarylandCollege ParkUSA
  7. 7.Department of Mathematics & Center for Computation and Technology (CCT)Louisiana State UniversityBaton RougeUSA
  8. 8.Fischell Department of Bioengineering & Institute for Systems ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations