Key Concepts in Human Genomics and Epidemiology

  • Offie P. Soldin
  • Christopher A. Loffredo
Part of the Issues in Clinical Child Psychology book series (ICCP)


Every expectant parent hopes for a healthy newborn infant and wants their baby to grow up healthy and happy. When serious child health problems become apparent, it is natural to ask why: What could have happened? Could this have been prevented? What caused this? Depending on the nature of the problem, suspicion may come to rest initially on prenatal exposures and environmental factors, and indeed for centuries this was the only available avenue of inquiry. It has been well known, for example, that heavy alcohol use during pregnancy could lead to the birth of an infant with deficient growth and mental development (US Cancer Statistics Working Group, 2003; Warner & Rosett, 1975). It was also commonly observed that some health problems “run in families,” but until the discovery of DNA in the middle twentieth century, and the genomics revolution in later decades, the tools for investigating genetic causes of disease were limited. The discovery of molecular genetic methods of analysis subsequently revolutionized the understanding of human disease at the most fundamental level of cells and cellular processes, thereby opening the door to studies designed to uncover the ultimate causes of childhood health problems.


Acute Lymphoblastic Leukemia Spina Bifida Neural Tube Defect Human Genome Project Childhood Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adgate, J. L., Barr, D. B., Clayton, C. A., Eberly, L. E., Freeman, N. C., Lioy, P. J., et al. (2001). Measurement of children’s exposure to pesticides: Analysis of urinary metabolite levels in a probability-based sample. Environmental Health Perspectives, 109, 583–590.PubMedGoogle Scholar
  2. Alderton, L. E., Spector, L. G., Blair, C. K., Roesler, M., Olshan, A. F., Robison, L. L., et al. (2006). Child and maternal household chemical exposure and the risk of acute leukemia in children with Down’s syndrome: A report from the Children’s Oncology Group. American Journal of Epidemiology, 164, 212–221.PubMedGoogle Scholar
  3. Aldridge, J. E., Seidler, F. J., Meyer, A., Thillai, I., & Slotkin, T. A. (2003). Serotonergic systems targeted by developmental exposure to chlorpyrifos: Effects during different critical periods. Environmental Health Perspectives, 111, 1736–1743.PubMedGoogle Scholar
  4. Alexander, F. E., Patheal, S. L., Biondi, A., Brandalise, S., Cabrera, M. E., Chan, L. C., et al. (2001). Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Research, 61, 2542–2546.PubMedGoogle Scholar
  5. Almawi, W. Y., Ameen, G., Tamim, H., Finan, R. R., & Irani-Hakime, N. (2004). Factor V G1691A, prothrombin G20210A, and methylenetetrahydrofolate reductase [MTHFR] C677T gene polymorphism in angiographically documented coronary artery disease. Journal of Thrombosis and Thrombolysis, 17, 199–205.PubMedGoogle Scholar
  6. Aydin-Sayitoglu, M., Hatirnaz, O., Erensoy, N., & Ozbek, U. (2006). Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. American Journal of Hematology, 81, 162–170.PubMedGoogle Scholar
  7. Bird, R. P., Draper, H. H., & Basrur, P. K. (1982). Effect of malonaldehyde and acetaldehyde on cultured mammalian cells. Production of micronuclei and chromosomal aberrations. Mutation Research, 101, 237–246.PubMedGoogle Scholar
  8. Blanco, M. J., Lacasana, M., Borja Aburto, V. H., Torres Sanchez, L. E., Garcia Garcia, A. M., & Lopez, C. L. (2005). Socioeconomic factors and the risk of anencephaly in a Mexican population: A case-control study. Public Health Report, 120, 39–45.Google Scholar
  9. Boccia, S., Boffetta, P., Brennan, P., Ricciardi, G., Gianfagna, F., Matsuo, K., et al. (2009). Meta-analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and risk of head and neck and lung cancer. Cancer Letters, 273, 55–61.PubMedGoogle Scholar
  10. Boccia, S., Hung, R., Ricciardi, G., Gianfagna, F., Ebert, M. P., Fang, J. Y., et al. (2008). Meta- and pooled analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer risk: A huge-GSEC review. American Journal of Epidemiology, 167, 505–516.PubMedGoogle Scholar
  11. Bove, F. J., Fulcomer, M. C., Klotz, J. B., Esmart, J., Dufficy, E. M., & Savrin, J. E. (1995). Public drinking water contamination and birth outcomes. American Journal of Epidemiology, 141, 850–862.PubMedGoogle Scholar
  12. Brody, L. C., Baker, P. J., Chines, P. S., Musick, A., Molloy, A. M., Swanson, D. A., et al. (1999). Methionine synthase: High-resolution mapping of the human gene and evaluation as a candidate locus for neural tube defects. Molecular Genetics and Metabolism, 67, 324–333.PubMedGoogle Scholar
  13. Brody, L. C., Conley, M., Cox, C., Kirke, P. N., McKeever, M. P., Mills, J. L., et al. (2002). A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: Report of the Birth Defects Research Group. American Journal of Human Genetics, 71, 1207–1215.PubMedGoogle Scholar
  14. Buckley, J. D., Robison, L. L., Swotinsky, R., Garabrant, D. H., LeBeau, M., Manchester, P., et al. (1989). Occupational exposures of parents of children with acute nonlymphocytic leukemia: A report from the Childrens Cancer Study Group. Cancer Research, 49, 4030–4037.PubMedGoogle Scholar
  15. Canalle, R., Burim, R. V., Tone, L. G., & Takahashi, C. S. (2004). Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environmental and Molecular Mutagenesis, 43, 100–109.PubMedGoogle Scholar
  16. Carmi, R., Gohar, J., Meizner, I., & Katz, M. (1994). Spontaneous abortion–high risk factor for neural tube defects in subsequent pregnancy. American Journal of Medical Genetics, 51, 93–97.PubMedGoogle Scholar
  17. Caughlan, A., Newhouse, K., Namgung, U., & Xia, Z. (2004). Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases. Toxicological Sciences, 78, 125–134.PubMedGoogle Scholar
  18. Chang, T. I., Horal, M., Jain, S. K., Wang, F., Patel, R., & Loeken, M. R. (2003). Oxidant regulation of gene expression and neural tube development: Insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia, 46, 538–545.PubMedGoogle Scholar
  19. Chango, A., Boisson, F., Barbe, F., Quilliot, D., Droesch, S., Pfister, M., et al. (2000). The effect of 677C–>T and 1298A–>C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects. The British Journal of Nutrition, 83, 593–596.PubMedGoogle Scholar
  20. Chen, H. C., Hu, W. X., Liu, Q. X., Li, W. K., Chen, F. Z., Rao, Z. Z., et al. (2008). Genetic polymorphisms of metabolic enzymes CYP1A1, CYP2D6, GSTM1 and GSTT1 and leukemia susceptibility. European Journal of Cancer Prevention, 17, 251–258.PubMedGoogle Scholar
  21. Chen, J., Kumar, M., Chan, W., Berkowitz, G., & Wetmur, J. G. (2003). Increased influence of genetic variation on PON1 activity in neonates. Environmental Health Perspectives, 111, 1403–1409.PubMedGoogle Scholar
  22. Chen, C. L., Liu, Q., Pui, C. H., Rivera, G. K., Sandlund, J. T., Ribeiro, R., et al. (1997). Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood, 89, 1701–1707.PubMedGoogle Scholar
  23. Chen, M., Xia, B., Rodriguez-Gueant, R. M., Bigard, M., & Gueant, J. L. (2005). Genotypes 677TT and 677CT+1298AC of methylenetetrahydrofolate reductase are associated with the severity of ulcerative colitis in central China. Gut, 54, 733–734.PubMedGoogle Scholar
  24. Chokkalingam, A. P., & Buffler, P. A. (2008). Genetic Susceptibility to Childhood Leukaemia. Radiation Protection Dosimetry, 132(2), 119–129.PubMedGoogle Scholar
  25. Chow, J. M., Huang, G. C., Shen, S. C., Wu, C. Y., Lin, C. W., & Chen, Y. C. (2008). Differential apoptotic effect of wogonin and nor-wogonin via stimulation of ROS production in human leukemia cells. Journal of Cellular Biochemistry, 103, 1394–1404.PubMedGoogle Scholar
  26. Clark, S. J. (2007). Action at a distance: Epigenetic silencing of large chromosomal regions in carcinogenesis. Human Molecular Genetics, 16(Spec No 1), R88–R95.PubMedGoogle Scholar
  27. Coerdt, W., Miller, K., Holzgreve, W., Rauskolb, R., Schwinger, E., & Rehder, H. (1997). Neural tube defects in chromosomally normal and abnormal human embryos. Ultrasound in Obstetrics and Gynecology, 10, 410–415.PubMedGoogle Scholar
  28. Costa, L. G., Cole, T. B., & Furlong, C. E. (2003). Polymorphisms of paraoxonase (PON1) and their significance in clinical toxicology of organophosphates. Journal of Toxicology. Clinical Toxicology, 41, 37–45.PubMedGoogle Scholar
  29. Costa, L. G., Cole, T. B., Vitalone, A., & Furlong, C. E. (2005). Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clinica Chimica Acta, 352, 37–47.Google Scholar
  30. Curtin, J. A., Quint, E., Tsipouri, V., Arkell, R. M., Cattanach, B., Copp, A. J., et al. (2003). Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Current Biology, 13, 1129–1133.PubMedGoogle Scholar
  31. Czeizel, A. E., & Dudas, I. (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. The New England Journal of Medicine, 327, 1832–1835.PubMedGoogle Scholar
  32. Czeizel, A., & Metneki, J. (1984). Recurrence risk after neural tube defects in a genetic counselling clinic. Journal of Medical Genetics, 21, 413–416.PubMedGoogle Scholar
  33. Dam, K., Seidler, F. J., & Slotkin, T. A. (1998). Developmental neurotoxicity of chlorpyrifos: Delayed targeting of DNA synthesis after repeated administration. Brain Research. Developmental Brain Research, 108, 39–45.PubMedGoogle Scholar
  34. Dam, K., Seidler, F. J., & Slotkin, T. A. (2000). Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. Brain Research. Developmental Brain Research, 121, 179–187.PubMedGoogle Scholar
  35. Davidoff, M. J., Petrini, J., Damus, K., Russell, R. B., & Mattison, D. (2002). Neural tube defect-specific infant mortality in the United States. Teratology, 66(Suppl 1), S17–S22.PubMedGoogle Scholar
  36. Davies, B. R., & Duran, M. (2003). Malformations of the cranium, vertebral column, and related central nervous system: Morphologic heterogeneity may indicate biological diversity. Birth Defects Research. Part A, Clinical and Molecular Teratology, 67, 563–571.PubMedGoogle Scholar
  37. De Marco, P., Merello, E., Mascelli, S., & Capra, V. (2006). Current perspectives on the genetic causes of neural tube defects. Neurogenetics, 7, 201–221.PubMedGoogle Scholar
  38. Dietl, J. (2005). Maternal obesity and complications during pregnancy. Journal of Perinatal Medicine, 33, 100–105.PubMedGoogle Scholar
  39. Dolk, H., Vrijheid, M., Armstrong, B., Abramsky, L., Bianchi, F., Garne, E., et al. (1998). Risk of congenital anomalies near hazardous-waste landfill sites in Europe: The EUROHAZCON study. Lancet, 352, 423–427.PubMedGoogle Scholar
  40. Dorak, M. T., McNally, R. J., & Parker, L. (2007). Re: “Childhood acute lymphoblastic leukemia and infections in the first year of life: A report from the United Kingdom childhood cancer study”. American Journal of Epidemiology, 166, 364–365.PubMedGoogle Scholar
  41. Dziadek, M. (1993). Preovulatory administration of clomiphene citrate to mice causes fetal growth retardation and neural tube defects (exencephaly) by an indirect maternal effect. Teratology, 47, 263–273.PubMedGoogle Scholar
  42. D’Angelo, A., Coppola, A., Madonna, P., Fermo, I., Pagano, A., Mazzola, G., et al. (2000). The role of vitamin B12 in fasting hyperhomocysteinemia and its interaction with the homozygous C677T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene. A case-control study of patients with early-onset thrombotic events. Thrombosis and Haemostasis, 83, 563–570.PubMedGoogle Scholar
  43. Edwards, M. J., Saunders, R. D., & Shiota, K. (2003). Effects of heat on embryos and foetuses. International Journal of Hyperthermia, 19, 295–324.PubMedGoogle Scholar
  44. Edwards, M. J., Shiota, K., Smith, M. S., & Walsh, D. A. (1995). Hyperthermia and birth defects. Reproductive Toxicology, 9, 411–425.PubMedGoogle Scholar
  45. Eldibany, M. M., & Caprini, J. A. (2007). Hyperhomocysteinemia and thrombosis: An overview. Archives of Pathology and Laboratory Medicine, 131, 872–884.PubMedGoogle Scholar
  46. Eskenazi, B., Bradman, A., & Castorina, R. (1999). Exposures of children to organophosphate pesticides and their potential adverse health effects. Environmental Health Perspectives, 107(Suppl 3), 409–419.PubMedGoogle Scholar
  47. Fedrick, J., & Adelstein, P. (1976). Area differences in the incidence of neural tube defect and the rate of spontaneous abortion. British Journal of Preventive and Social Medicine, 30, 32–35.PubMedGoogle Scholar
  48. Fine, E. L., Horal, M., Chang, T. I., Fortin, G., & Loeken, M. R. (1999). Evidence that elevated glucose causes altered gene expression, apoptosis, and neural tube defects in a mouse model of diabetic pregnancy. Diabetes, 48, 2454–2462.PubMedGoogle Scholar
  49. Fineman, R. M., Jorde, L. B., Martin, R. A., Hasstedt, S. J., Wing, S. D., & Walker, M. L. (1982). Spinal dysraphia as an autosomal dominant defect in four families. American Journal of Medical Genetics, 12, 457–464.PubMedGoogle Scholar
  50. Finnell, R. H., Shaw, G. M., Lammer, E. J., Brandl, K. L., Carmichael, S. L., & Rosenquist, T. H. (2004). Gene–nutrient interactions: Importance of folates and retinoids during early embryogenesis. Toxicology and Applied Pharmacology, 198, 75–85.PubMedGoogle Scholar
  51. Forges, T., Monnier-Barbarino, P., Alberto, J. M., Gueant-Rodriguez, R. M., Daval, J. L., & Gueant, J. L. (2007). Impact of folate and homocysteine metabolism on human reproductive health. Human Reproduction Update, 13, 225–238.PubMedGoogle Scholar
  52. Forrest, D., Horsley, S., Roberts, E., & Barrow, S. (1995). Factors relating to smoking and pregnancy in the North Western Region. Journal of Public Health Medicine, 17, 205–210.PubMedGoogle Scholar
  53. Frey, L., & Hauser, W. A. (2003). Epidemiology of neural tube defects. Epilepsia, 44(Suppl 3), 4–13.PubMedGoogle Scholar
  54. Friedrich, M. J. (2002). Causes sought for neural tube defects in infants of diabetic pregnant women. JAMA, 287, 2487–2488.PubMedGoogle Scholar
  55. Friso, S., Girelli, D., Trabetti, E., Stranieri, C., Olivieri, O., Tinazzi, E., et al. (2002). A1298C methylenetetrahydrofolate reductase mutation and coronary artery disease: Relationships with C677T polymorphism and homocysteine/folate metabolism. Clinical and Experimental Medicine, 2, 7–12.PubMedGoogle Scholar
  56. Frosst, P., Blom, H. J., Milos, R., Goyette, P., Sheppard, C. A., Matthews, R. G., et al. (1995). A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nature Genetics, 10, 111–113.PubMedGoogle Scholar
  57. Furlong, C. E., Cole, T. B., Jarvik, G. P., Pettan-Brewer, C., Geiss, G. K., Richter, R. J., et al. (2005). Role of paraoxonase (PON1) status in pesticide sensitivity: Genetic and temporal determinants. Neurotoxicology, 26, 651–659.PubMedGoogle Scholar
  58. Gallegos-Arreola, M. P., Gonzalez-Garcia, J. R., Figuera, L. E., Puebla-Perez, A. M., Delgado-Lamas, J. L., & Zuniga-Gonzalez, G. M. (2008). Distribution of CYP1A1*2A polymorphism in adult patients with acute lymphoblastic leukemia in a Mexican population. Blood Cells, Molecules and Diseases, 41, 91–94.Google Scholar
  59. Garabedian, B. H., & Fraser, F. C. (1994). A familial association between twinning and upper-neural tube defects. American Journal of Human Genetics, 55, 1050–1053.PubMedGoogle Scholar
  60. Garcia, S. J., Seidler, F. J., & Slotkin, T. A. (2003). Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: Effects on neurospecific proteins indicate changing vulnerabilities. Environmental Health Perspectives, 111, 297–303.PubMedGoogle Scholar
  61. Garry, V. F. (2004). Pesticides and children. Toxicology and Applied Pharmacology, 198, 152–163.PubMedGoogle Scholar
  62. Gra, O. A., Glotov, A. S., Nikitin, E. A., Glotov, O. S., Kuznetsova, V. E., Chudinov, A. V., et al. (2008). Polymorphisms in xenobiotic-metabolizing genes and the risk of chronic lymphocytic leukemia and non-Hodgkin’s lymphoma in adult Russian patients. American Journal of Hematology, 83, 279–287.PubMedGoogle Scholar
  63. Graham, I. M., Daly, L. E., Refsum, H. M., Robinson, K., Brattstrom, L. E., Ueland, P. M., et al. (1997). Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA, 277, 1775–1781.PubMedGoogle Scholar
  64. Greaves, M. (1999). Molecular genetics, natural history and the demise of childhood leukaemia. European Journal of Cancer, 35, 1941–1953.PubMedGoogle Scholar
  65. Greaves, M. F. (2004). Biological models for leukaemia and lymphoma. IARC Scientific Publications, 157, 351–372.PubMedGoogle Scholar
  66. Greaves, M. (2005). In utero origins of childhood leukaemia. Early Human Development, 81, 123–129.PubMedGoogle Scholar
  67. Greaves, M. F., & Alexander, F. E. (1993). An infectious etiology for common acute lymphoblastic leukemia in childhood? Leukemia, 7, 349–360.PubMedGoogle Scholar
  68. Gregory, S. G., Barlow, K. F., McLay, K. E., Kaul, R., Swarbreck, D., Dunham, A., et al. (2006). The DNA sequence and biological annotation of human chromosome 1. Nature, 441, 315–321.PubMedGoogle Scholar
  69. Groenen, P. M., Peer, P. G., Wevers, R. A., Swinkels, D. W., Franke, B., Mariman, E. C., et al. (2003a). Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida. American Journal of Obstetrics and Gynecology, 189, 1713–1719.PubMedGoogle Scholar
  70. Groenen, P. M., Wevers, R. A., Janssen, F. S., Tuerlings, J. H., Merkus, J. M., & Steegers-Theunissen, R. P. (2003b). Are myo-inositol, glucose and zinc concentrations in amniotic fluid of fetuses with spina bifida different from controls? Early Human Development, 71, 1–8.PubMedGoogle Scholar
  71. Gueant, J. L., Gueant-Rodriguez, R. M., Anello, G., Bosco, P., Brunaud, L., Romano, C., et al. (2003). Genetic determinants of folate and vitamin B12 metabolism: A common pathway in neural tube defect and Down syndrome? Clinical Chemistry and Laboratory Medicine, 41, 1473–1477.PubMedGoogle Scholar
  72. Guha, N., Chang, J. S., Chokkalingam, A. P., Wiemels, J. L., Smith, M. T., & Buffler, P. A. (2008). NQO1 polymorphisms and de novo childhood leukemia: A HuGE review and meta-analysis. American Journal of Epidemiology, 168, 1221–1232.PubMedGoogle Scholar
  73. Guizzetti, M., Pathak, S., Giordano, G., & Costa, L. G. (2005). Effect of organophosphorus insecticides and their metabolites on astroglial cell proliferation. Toxicology, 215, 182–190.PubMedGoogle Scholar
  74. Gulati, S., Brody, L. C., & Banerjee, R. (1999). Posttranscriptional regulation of mammalian methionine synthase by B12. Biochemical and Biophysical Research Communications, 259, 436–442.PubMedGoogle Scholar
  75. Hanson, N. Q., Aras, O., Yang, F., & Tsai, M. Y. (2001). C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: Incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clinical Chemistry, 47, 661–666.PubMedGoogle Scholar
  76. Harris, M. J. (2001). Why are the genes that cause risk of human neural tube defects so hard to find? Teratology, 63, 165–166.PubMedGoogle Scholar
  77. Harris, R. Z., Jang, G. R., & Tsunoda, S. (2003). Dietary effects on drug metabolism and transport. Clinical Pharmacokinetics, 42, 1071–1088.PubMedGoogle Scholar
  78. Hol, F. A., van der Put, N. M., Geurds, M. P., Heil, S. G., Trijbels, F. J., Hamel, B. C., et al. (1998). Molecular genetic analysis of the gene encoding the trifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clinical Genetics, 53, 119–125.PubMedGoogle Scholar
  79. Howard, A. S., Bucelli, R., Jett, D. A., Bruun, D., Yang, D., & Lein, P. J. (2005). Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicology and Applied Pharmacology, 207, 112–124.PubMedGoogle Scholar
  80. Huang, Y., Roelink, H., & McKnight, G. S. (2002). Protein kinase A deficiency causes axially localized neural tube defects in mice. The Journal of Biological Chemistry, 277, 19889–19896.PubMedGoogle Scholar
  81. International Agency for research on Cancer (IARC) (1991). Occupational Exposures in Insecticide Application and Some Pesticides. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 53.Google Scholar
  82. Infante-Rivard, C., Labuda, D., Krajinovic, M., & Sinnett, D. (1999). Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology, 10, 481–487.PubMedGoogle Scholar
  83. Infante-Rivard, C., & Weichenthal, S. (2007). Pesticides and childhood cancer: An update of Zahm and Ward’s 1998 review. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 10, 81–99.PubMedGoogle Scholar
  84. Jacques, P. F., Bostom, A. G., Williams, R. R., Ellison, R. C., Eckfeldt, J. H., Rosenberg, I. H., et al. (1996). Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation, 93, 7–9.PubMedGoogle Scholar
  85. Jantova, S., Repicky, A., Letasiova, S., & Cipak, L. (2008). 4-Amino-3-acetylquinoline-induced apoptosis of murine L1210 leukemia cells involves ROS-mitochondrial-mediated death signaling and activation of p38 MAPK. Cell Biochemistry and Function, 26, 609–619.PubMedGoogle Scholar
  86. Jett, D. A., Navoa, R. V., Beckles, R. A., & McLemore, G. L. (2001). Cognitive function and cholinergic neurochemistry in weanling rats exposed to chlorpyrifos. Toxicology and Applied Pharmacology, 174, 89–98.PubMedGoogle Scholar
  87. Juriloff, D. M., & Harris, M. J. (2000). Mouse models for neural tube closure defects. Human Molecular Genetics, 9, 993–1000.PubMedGoogle Scholar
  88. Kamel, A. M., Moussa, H. S., Ebid, G. T., Bu, R. R., & Bhatia, K. G. (2007). Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia using tissue microarray. Journal of the Egyptian National Cancer Institute, 19, 96–105.PubMedGoogle Scholar
  89. Kang, H. J., Oh, Y., Chun, S. M., Seo, Y. J., Shin, H. Y., Kim, C. W., et al. (2008). TotalPlex gene amplification using bulging primers for pharmacogenetic analysis of acute lymphoblastic leukemia. Molecular and Cellular Probes, 22, 193–200.PubMedGoogle Scholar
  90. Karmaus, W., DeKoning, E. P., Kruse, H., Witten, J., & Osius, N. (2001). Early childhood determinants of organochlorine concentrations in school-aged children. Pediatric Research, 50, 331–336.PubMedGoogle Scholar
  91. Kibar, Z., Capra, V., & Gros, P. (2007). Toward understanding the genetic basis of neural tube defects. Clinical Genetics, 71, 295–310.PubMedGoogle Scholar
  92. Kidd, J. M., Cooper, G. M., Donahue, W. F., Hayden, H. S., Sampas, N., Graves, T., et al. (2008). Mapping and sequencing of structural variation from eight human genomes. Nature, 453, 56–64.PubMedGoogle Scholar
  93. Kirke, P. N., Molloy, A. M., Daly, L. E., Burke, H., Weir, D. G., & Scott, J. M. (1993). Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. The Quarterly Journal of Medicine, 86, 703–708.PubMedGoogle Scholar
  94. Klootwijk, R., Schijvenaars, M. M., Mariman, E. C., & Franke, B. (2004). Further characterization of the genetic defect of the Bent tail mouse, a mouse model for human neural tube defects. Birth Defects Research. Part A, Clinical and Molecular Teratology, 70, 880–884.PubMedGoogle Scholar
  95. Koos, B. J., & Longo, L. D. (1976). Mercury toxicity in the pregnant woman, fetus, and newborn infant. A review. American Journal of Obstetrics and Gynecology, 126, 390–409.PubMedGoogle Scholar
  96. Lafiura, K. M., Bielawski, D. M., Posecion, N. C., Jr., Ostrea, E. M., Jr., Matherly, L. H., Taub, J. W., et al. (2007). Association between prenatal pesticide exposures and the generation of leukemia-associated T(8;21). Pediatric Blood and Cancer, 49, 624–628.PubMedGoogle Scholar
  97. Lammer, E. J., Chen, D. T., Hoar, R. M., Agnish, N. D., Benke, P. J., Braun, J. T., et al. (1985). Retinoic acid embryopathy. The New England Journal of Medicine, 313, 837–841.PubMedGoogle Scholar
  98. Landrigan, P. J., Claudio, L., Markowitz, S. B., Berkowitz, G. S., Brenner, B. L., Romero, H., et al. (1999). Pesticides and inner-city children: Exposures, risks, and prevention. Environmental Health Perspectives, 107(Suppl 3), 431–437.PubMedGoogle Scholar
  99. Laws, E. R., & Hayes, W. J. (1991). Handbook of pesticides toxicology. San Diego, CA: Academic Press.Google Scholar
  100. Lee, W. J., Blair, A., Hoppin, J. A., Lubin, J. H., Rusiecki, J. A., Sandler, D. P., et al. (2004). Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. Journal of the National Cancer Institute, 96, 1781–1789.PubMedGoogle Scholar
  101. Leiss, J. K., & Savitz, D. A. (1995). Home pesticide use and childhood cancer: A case-control study. American Journal of Public Health, 85, 249–252.PubMedGoogle Scholar
  102. Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66–72.PubMedGoogle Scholar
  103. Li, W. F., Costa, L. G., Richter, R. J., Hagen, T., Shih, D. M., Tward, A., et al. (2000). Catalytic efficiency determines the in-vivo efficacy of PON1 for detoxifying organophosphorus compounds. Pharmacogenetics, 10, 767–779.PubMedGoogle Scholar
  104. Lin, P. C., Chang, T. T., Lin, S. R., Chiou, S. S., Jang, R. C., & Sheen, J. M. (2008). TEL/AML1 fusion gene in childhood acute lymphoblastic leukemia in southern Taiwan. The Kaohsiung Journal of Medical Sciences, 24, 289–296.PubMedGoogle Scholar
  105. Linabery, A. M., & Ross, J. A. (2008). Trends in childhood cancer incidence in the US (1992–2004). Cancer, 112, 416–432.PubMedGoogle Scholar
  106. Linet, M. S., Ries, L. A., Smith, M. A., Tarone, R. E., & Devesa, S. S. (1999). Cancer surveillance series: Recent trends in childhood cancer incidence and mortality in the United States. Journal of the National Cancer Institute, 91, 1051–1058.PubMedGoogle Scholar
  107. Loeken, M. R. (2005). Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 135C, 77–87.PubMedGoogle Scholar
  108. Lowengart, R. A., Peters, J. M., Cicioni, C., Buckley, J., Bernstein, L., Preston-Martin, S., et al. (1987). Childhood leukemia and parents’ occupational and home exposures. Journal of the National Cancer Institute, 79, 39–46.PubMedGoogle Scholar
  109. Lu, C., Kedan, G., Fisker-Andersen, J., Kissel, J. C., & Fenske, R. A. (2004). Multipathway organophosphorus pesticide exposures of preschool children living in agricultural and nonagricultural communities. Environmental Research, 96, 283–289.PubMedGoogle Scholar
  110. Ma, X., Buffler, P. A., Gunier, R. B., Dahl, G., Smith, M. T., Reinier, K., et al. (2002). Critical windows of exposure to household pesticides and risk of childhood leukemia. Environmental Health Perspectives, 110, 955–960.PubMedGoogle Scholar
  111. Mallol-Mesnard, N., Menegaux, F., Auvrignon, A., Auclerc, M. F., Bertrand, Y., Nelken, B., et al. (2007). Vaccination and the risk of childhood acute leukaemia: The ESCALE study (SFCE). International Journal of Epidemiology, 36, 110–116.PubMedGoogle Scholar
  112. Marshall, E. G., Gensburg, L. J., Deres, D. A., Geary, N. S., & Cayo, M. R. (1997). Maternal residential exposure to hazardous wastes and risk of central nervous system and musculoskeletal birth defects. Archives of Environmental Health, 52, 416–425.PubMedGoogle Scholar
  113. McMillen, I. C., MacLaughlin, S. M., Muhlhausler, B. S., Gentili, S., Duffield, J. L., & Morrison, J. L. (2008). Developmental origins of adult health and disease: The role of periconceptional and foetal nutrition. Basic and Clinical Pharmacology and Toxicology, 102, 82–89.PubMedGoogle Scholar
  114. Meinert, R., Kaatsch, P., Kaletsch, U., Krummenauer, F., Miesner, A., & Michaelis, J. (1996). Childhood leukaemia and exposure to pesticides. Results of a case-control study in northern Germany. European Journal of Cancer, 32A, 1943–1948.PubMedGoogle Scholar
  115. Meinert, R., Kaletsch, U., Kaatsch, P., Schuz, J., & Michaelis, J. (1999). Associations between childhood cancer and ionizing radiation: Results of a population-based case-control study in Germany. Cancer Epidemiology, Biomarkers and Prevention, 8, 793–799.PubMedGoogle Scholar
  116. Meinert, R., Schuz, J., Kaletsch, U., Kaatsch, P., & Michaelis, J. (2000). Leukemia and non-Hodgkin’s lymphoma in childhood and exposure to pesticides: Results of a register-based case-control study in Germany. American Journal of Epidemiology, 151, 639–646.PubMedGoogle Scholar
  117. Menegaux, F., Baruchel, A., Bertrand, Y., Lescoeur, B., Leverger, G., Nelken, B., et al. (2006). Household exposure to pesticides and risk of childhood acute leukaemia. Occupational And Environmental Medicine, 63, 131–134.PubMedGoogle Scholar
  118. Merhi, M., Raynal, H., Cahuzac, E., Vinson, F., Cravedi, J. P., & Gamet-Payrastre, L. (2007). Occupational exposure to pesticides and risk of hematopoietic cancers: Meta-analysis of case-control studies. Cancer Causes Control, 18, 1209–1226.PubMedGoogle Scholar
  119. Mills, J. L., McPartlin, J. M., Kirke, P. N., Lee, Y. J., Conley, M. R., Weir, D. G., et al. (1995). Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet, 345, 149–151.PubMedGoogle Scholar
  120. Moretti, M. E., Bar-Oz, B., Fried, S., & Koren, G. (2005). Maternal hyperthermia and the risk for neural tube defects in offspring: Systematic review and meta-analysis. Epidemiology, 16, 216–219.PubMedGoogle Scholar
  121. Mueller, R. F., Hornung, S., Furlong, C. E., Anderson, J., Giblett, E. R., & Motulsky, A. G. (1983). Plasma paraoxonase polymorphism: A new enzyme assay, population, family, biochemical, and linkage studies. American Journal of Human Genetics, 35, 393–408.PubMedGoogle Scholar
  122. NIH. (2008). NIH Roadmap for medical research. [On-line].
  123. Nwanguma, B. C. (2003). The human genome project and the future of medical practice. African Journal of Biotechnology, 2, 649–656.Google Scholar
  124. O’Leary, K., & Sheehy, P. J. (2002). Plasma, liver and kidney folate and plasma homocysteine concentrations are poor response variables at very low dietary folate intakes, in a folate depletion/repletion rat model. International Journal of Food Sciences and Nutrition, 53, 35–42.PubMedGoogle Scholar
  125. Pakakasama, S., Sirirat, T., Kanchanachumpol, S., Udomsubpayakul, U., Mahasirimongkol, S., Kitpoka, P., et al. (2007). Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatric Blood and Cancer, 48, 16–20.PubMedGoogle Scholar
  126. Pani, L., Horal, M., & Loeken, M. R. (2002). Polymorphic susceptibility to the molecular causes of neural tube defects during diabetic embryopathy. Diabetes, 51, 2871–2874.PubMedGoogle Scholar
  127. Papp, C., Adam, Z., Toth-Pal, E., Torok, O., Varadi, V., & Papp, Z. (1997). Risk of recurrence of craniospinal anomalies. Journal of Maternal-Fetal Medicine, 6, 53–57.PubMedGoogle Scholar
  128. Peedicayil, J. (2006). Epigenetic therapy–a new development in pharmacology. Indian Journal of Medical Research, 123, 17–24.PubMedGoogle Scholar
  129. Peedicayil, J. (2008). Beyond genomics: Epigenetics and epigenomics. Clinical Pharmacology and Therapeutics, 84, 25–26.PubMedGoogle Scholar
  130. Peiris-John, R. J., & Wickremasinghe, R. (2008). Impact of low-level exposure to organophosphates on human reproduction and survival. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102, 239–245.PubMedGoogle Scholar
  131. Pombo-de-Oliveira, M. S., & Koifman, S. (2006). Infant acute leukemia and maternal exposures during pregnancy. Cancer Epidemiology, Biomarkers and Prevention, 15, 2336–2341.PubMedGoogle Scholar
  132. Pui, C. H. (2004). Recent advances in childhood acute lymphoblastic leukemia. Journal of the Formosan Medical Association, 103, 85–95.PubMedGoogle Scholar
  133. Pui, C. H., Relling, M. V., & Downing, J. R. (2004). Acute lymphoblastic leukemia. The New England Journal of Medicine, 350, 1535–1548.PubMedGoogle Scholar
  134. Purandare, S. M., Ware, S. M., Kwan, K. M., Gebbia, M., Bassi, M. T., Deng, J. M., et al. (2002). A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development, 129, 2293–2302.PubMedGoogle Scholar
  135. Qiao, D., Seidler, F. J., & Slotkin, T. A. (2001). Developmental neurotoxicity of chlorpyrifos modeled in vitro: Comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environmental Health Perspectives, 109, 909–913.PubMedGoogle Scholar
  136. Ramakrishnan, S., Sulochana, K. N., Lakshmi, S., Selvi, R., & Angayarkanni, N. (2006). Biochemistry of homocysteine in health and diseases. Indian Journal of Biochemistry and Biophysics, 43, 275–283.Google Scholar
  137. Rannala, B. (2001). Finding genes influencing susceptibility to complex diseases in the post-genome era. American Journal of Pharmacogenomics, 1, 203–221.PubMedGoogle Scholar
  138. Ray, J. G., Vermeulen, M. J., Meier, C., & Wyatt, P. R. (2004). Risk of congenital anomalies detected during antenatal serum screening in women with pregestational diabetes. QJM, 97, 651–653.PubMedGoogle Scholar
  139. Reynolds, P., Von Behren, J., Gunier, R. B., Goldberg, D. E., Harnly, M., & Hertz, A. (2005). Agricultural pesticide use and childhood cancer in California. Epidemiology, 16, 93–100.PubMedGoogle Scholar
  140. Reynolds, P., Von Behren, J., Gunier, R. B., Goldberg, D. E., Hertz, A., & Harnly, M. E. (2002). Childhood cancer and agricultural pesticide use: An ecologic study in California. Environmental Health Perspectives, 110, 319–324.PubMedGoogle Scholar
  141. Ricceri, L., Markina, N., Valanzano, A., Fortuna, S., Cometa, M. F., Meneguz, A., et al. (2003). Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicology and Applied Pharmacology, 191, 189–201.PubMedGoogle Scholar
  142. Ries, L. A. G., Smith, M. A., Gurney, J. G., Linet, M., Tamra, T., Young, J. L., Bunin, G. R. (Eds.). (1999). Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995 (Rep. No. NIH Pub. No. 99-4649). Bethesda, MD: National Cancer Institute, SEER Program.Google Scholar
  143. Robison, L. L. (1992). Down syndrome and leukemia. Leukemia, 6(Suppl 1), 5–7.PubMedGoogle Scholar
  144. Roman, E., Simpson, J., Ansell, P., Kinsey, S., Mitchell, C. D., McKinney, P. A., et al. (2007). Childhood acute lymphoblastic leukemia and infections in the first year of life: A report from the United Kingdom Childhood Cancer Study. American Journal of Epidemiology, 165, 496–504.PubMedGoogle Scholar
  145. Ross, J. A., Davies, S. M., Potter, J. D., & Robison, L. L. (1994). Epidemiology of childhood leukemia, with a focus on infants. Epidemiologic Reviews, 16, 243–272.PubMedGoogle Scholar
  146. Ross, J. A., Spector, L. G., Robison, L. L., & Olshan, A. F. (2005). Epidemiology of leukemia in children with Down syndrome. Pediatric Blood and Cancer, 44, 8–12.PubMedGoogle Scholar
  147. Roy, T. S., Sharma, V., Seidler, F. J., & Slotkin, T. A. (2005). Quantitative morphological assessment reveals neuronal and glial deficits in hippocampus after a brief subtoxic exposure to chlorpyrifos in neonatal rats. Brain Research. Developmental Brain Research, 155, 71–80.PubMedGoogle Scholar
  148. Rudant, J., Menegaux, F., Leverger, G., Baruchel, A., Nelken, B., Bertrand, Y., et al. (2007). Household exposure to pesticides and risk of childhood hematopoietic malignancies: The ESCALE study (SFCE). Environmental Health Perspectives, 115, 1787–1793.PubMedGoogle Scholar
  149. Sanborn, M., Cole, D., Kerr, K., Vakil, C., Sanin, L. H., & Bassil, K. (2004). Pesticides literature review. Toronto: The Ontario College of Family Physicians.Google Scholar
  150. Schardein, J. L. (1993). Chemically induced birth defects. New York: Marcel Dekker Inc.Google Scholar
  151. Sebold, C. D., Melvin, E. C., Siegel, D., Mehltretter, L., Enterline, D. S., Nye, J. S., et al. (2005). Recurrence risks for neural tube defects in siblings of patients with lipomyelomeningocele. Genetics in Medicine, 7, 64–67.PubMedGoogle Scholar
  152. Seller, M. J. (1995). Neural tube defects, chromosome abnormalities and multiple closure sites for the human neural tube. Clinical Dysmorphology, 4, 202–207.PubMedGoogle Scholar
  153. Sepulveda, W., Corral, E., Ayala, C., Be, C., Gutierrez, J., & Vasquez, P. (2004). Chromosomal abnormalities in fetuses with open neural tube defects: Prenatal identification with ultrasound. Ultrasound in Obstetrics and Gynecology, 23, 352–356.PubMedGoogle Scholar
  154. Sever, L. E. (1995). Looking for causes of neural tube defects: Where does the environment fit in? Environmental Health Perspectives, 103(Suppl 6), 165–171.PubMedGoogle Scholar
  155. Sfar, S., & Chouchane, L. (2008). [Human genome project: A federator program of genomic medicine]. Pathologie-Biologie (Paris), 56, 170–175.Google Scholar
  156. Shaffer, L. G., Marazita, M. L., Bodurtha, J., Newlin, A., & Nance, W. E. (1990). Evidence for a major gene in familial anencephaly. American Journal of Medical Genetics, 36, 97–101.PubMedGoogle Scholar
  157. Sharma, M., & Odenike, O. M. (2008). DNA repair genes, electromagnetic fields and susceptibility to acute leukemia? Leukemia and Lymphoma, 49, 2233–2234.PubMedGoogle Scholar
  158. Shaw, G. M., Nelson, V., & Olshan, A. F. (2002). Paternal occupational group and risk of offspring with neural tube defects. Paediatric and Perinatal Epidemiology, 16, 328–333.PubMedGoogle Scholar
  159. Shin, D. Y., Kim, G. Y., Li, W., Choi, B. T., Kim, N. D., Kang, H. S., et al. (2009). Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells. Biomedicine and Pharmacotherapy, 63, 86–94.Google Scholar
  160. Simpson, J., Smith, A., Ansell, P., & Roman, E. (2007). Childhood leukaemia and infectious exposure: A report from the United Kingdom Childhood Cancer Study (UKCCS). European Journal of Cancer, 43, 2396–2403.PubMedGoogle Scholar
  161. Slagboom, P. E., & Meulenbelt, I. (2002). Organisation of the human genome and our tools for identifying disease genes. Biological Psychology, 61, 11–31.PubMedGoogle Scholar
  162. Slotkin, T. A., Seidler, F. J., & Fumagalli, F. (2008). Targeting of neurotrophic factors, their receptors, and signaling pathways in the developmental neurotoxicity of organophosphates in vivo and in vitro. Brain Research Bulletin, 76, 424–438.PubMedGoogle Scholar
  163. Smith, M. T., Wang, Y., Skibola, C. F., Slater, D. J., Lo, N. L., Nowell, P. C., et al. (2002). Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children. Blood, 100, 4590–4593.PubMedGoogle Scholar
  164. Song, X., Seidler, F. J., Saleh, J. L., Zhang, J., Padilla, S., & Slotkin, T. A. (1997). Cellular mechanisms for developmental toxicity of chlorpyrifos: Targeting the adenylyl cyclase signaling cascade. Toxicology and Applied Pharmacology, 145, 158–174.PubMedGoogle Scholar
  165. Stanulla, M., Schaffeler, E., Arens, S., Rathmann, A., Schrauder, A., Welte, K., et al. (2005). GSTP1 and MDR1 genotypes and central nervous system relapse in childhood acute lymphoblastic leukemia. International Journal of Hematology, 81, 39–44.PubMedGoogle Scholar
  166. Steegers-Theunissen, R. P., Boers, G. H., Blom, H. J., Nijhuis, J. G., Thomas, C. M., Borm, G. F., et al. (1995). Neural tube defects and elevated homocysteine levels in amniotic fluid. American Journal of Obstetrics and Gynecology, 172, 1436–1441.PubMedGoogle Scholar
  167. Stevenson, R. E., Allen, W. P., Pai, G. S., Best, R., Seaver, L. H., Dean, J., et al. (2000). Decline in prevalence of neural tube defects in a high-risk region of the United States. Pediatrics, 106, 677–683.PubMedGoogle Scholar
  168. Strange, R. C., Lear, J. T., & Fryer, A. A. (1998). Glutathione S-transferase polymorphisms: Influence on susceptibility to cancer. Chemico-Biological Interactions, 111–112, 351–364.PubMedGoogle Scholar
  169. Suarez, L., Felkner, M., & Hendricks, K. (2004). The effect of fever, febrile illnesses, and heat exposures on the risk of neural tube defects in a Texas-Mexico border population. Birth Defects Research. Part A, Clinical and Molecular Teratology, 70, 815–819.PubMedGoogle Scholar
  170. Suzuki, T., Shen, H., Akagi, K., Morse, H. C., Malley, J. D., Naiman, D. Q., et al. (2002). New genes involved in cancer identified by retroviral tagging. Nature Genetics, 32, 166–174.PubMedGoogle Scholar
  171. Sztenc, S. (2004). [Hyperhomocysteinemia and pregnancy complications]. Ginekologia Polska, 75, 317–325.PubMedGoogle Scholar
  172. Tauchi, H., Tomizawa, D., Eguchi, M., Eguchi-Ishimae, M., Koh, K., Hirayama, M., et al. (2008). Clinical features and outcome of MLL gene rearranged acute lymphoblastic leukemia in infants with additional chromosomal abnormalities other than 11q23 translocation. Leukemia Research, 32, 1523–1529.PubMedGoogle Scholar
  173. Theriault, G., Iturra, H., & Gingras, S. (1983). Evaluation of the association between birth defects and exposure to ambient vinyl chloride. Teratology, 27, 359–370.PubMedGoogle Scholar
  174. Tilson, H. A. (2000). Neurotoxicology risk assessment guidelines: Developmental neurotoxicology. Neurotoxicology, 21, 189–194.PubMedGoogle Scholar
  175. US Cancer Statistics Working Group. (2003). United States Cancer Statistics: 2000 Incidence, Atlanta, GA.Google Scholar
  176. US Cancer Statistics Working Group. (2006). United States Cancer Statistics: 2003 Incidence and Mortality. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute.Google Scholar
  177. US Food and Drug Administration. (2000). Letter regarding dietary supplement health claim for Folic Acid with respect to neural tube defects, Washington, DC.Google Scholar
  178. Urayama, K. Y., Wiencke, J. K., Buffler, P. A., Chokkalingam, A. P., Metayer, C., & Wiemels, J. L. (2007). MDR1 gene variants, indoor insecticide exposure, and the risk of childhood acute lymphoblastic leukemia. Cancer Epidemiology, Biomarkers and Prevention, 16, 1172–1177.PubMedGoogle Scholar
  179. Volcik, K. A., Blanton, S. H., Kruzel, M. C., Townsend, I. T., Tyerman, G. H., Mier, R. J., et al. (2002). Testing for genetic associations in a spina bifida population: Analysis of the HOX gene family and human candidate gene regions implicated by mouse models of neural tube defects. American Journal of Medical Genetics, 110, 203–207.PubMedGoogle Scholar
  180. Warkany, J., & Petering, H. G. (1972). Congenital malformations of the central nervous system in rats produced by maternal zinc deficiency. Teratology, 5, 319–334.PubMedGoogle Scholar
  181. Warner, R. H., & Rosett, H. L. (1975). The effects of drinking on offspring: An historical survey of the American and British literature. Journal of Studies on Alcohol, 36, 1395–1420.PubMedGoogle Scholar
  182. Weiss, B., Amler, S., & Amler, R. W. (2004). Pesticides. Pediatrics, 113, 1030–1036.PubMedGoogle Scholar
  183. Windham, G. C., & Sever, L. E. (1982). Neural tube defects among twin births. American Journal of Human Genetics, 34, 988–998.PubMedGoogle Scholar
  184. Windham, G. C., Bjerkedal, T., Sever, L. E. (1982). The association of twinning and neural tube defects: studies in Los Angeles, California, and Norway. Acta geneticae medicae et gemellologiae, 31, 165–172.Google Scholar
  185. Wong, W. Y., Merkus, H. M., Thomas, C. M., Menkveld, R., Zielhuis, G. A., & Steegers-Theunissen, R. P. (2002). Effects of folic acid and zinc sulfate on male factor subfertility: A double-blind, randomized, placebo-controlled trial. Fertility and Sterility, 77, 491–498.PubMedGoogle Scholar
  186. Worthman, C. M., & Kuzara, J. (2005). Life history and the early origins of health differentials. American Journal of Human Biology, 17, 95–112.PubMedGoogle Scholar
  187. van der Put, N. M., Gabreels, F., Stevens, E. M., Smeitink, J. A., Trijbels, F. J., Eskes, T. K., et al. (1998). A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural-tube defects? American Journal of Human Genetics, 62, 1044–1051.PubMedGoogle Scholar
  188. van der Put, N. M., Thomas, C. M., Eskes, T. K., Trijbels, F. J., Steegers-Theunissen, R. P., Mariman, E. C., et al. (1997a). Altered folate and vitamin B12 metabolism in families with spina bifida offspring. QJM, 90, 505–510.PubMedGoogle Scholar
  189. van der Put, N. M., van der Molen, E. F., Kluijtmans, L. A., Heil, S. G., Trijbels, J. M., Eskes, T. K., et al. (1997b). Sequence analysis of the coding region of human methionine synthase: Relevance to hyperhomocysteinaemia in neural-tube defects and vascular disease. QJM, 90, 511–517.PubMedGoogle Scholar
  190. Zahm, S. H., & Ward, M. H. (1998). Pesticides and childhood cancer. Environmental Health Perspectives, 106(Suppl 3), 893–908.PubMedGoogle Scholar
  191. Zhu, H., Wicker, N. J., Shaw, G. M., Lammer, E. J., Hendricks, K., Suarez, L., et al. (2003). Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Molecular Genetics and Metabolism, 78, 216–221.PubMedGoogle Scholar
  192. Zlotogora, J. (1995). Major gene is responsible for anencephaly among Iranian Jews. American Journal of Medical Genetics, 56, 87–89.PubMedGoogle Scholar
  193. Zlotogora, J. (1997). Genetic disorders among Palestinian Arabs: 1. Effects of consanguinity. American Journal of Medical Genetics, 68, 472–475.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Offie P. Soldin
    • 1
  • Christopher A. Loffredo
    • 1
  1. 1.Georgetown University Medical CenterWashingtonUSA

Personalised recommendations