Epo Delivery by Genetically Engineered C2C12 Myoblasts Immobilized in Microcapsules

  • Ainhoa Murua
  • Gorka Orive
  • Rosa M Hernández
  • José Luis Pedraz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 670)


Over the last half century, the use of erythropoietin (Epo) in the management of malignancies has been extensively studied. Originally viewed as the renal hormone responsible for red blood cell production, many recent in vivo and clinical approaches demonstrate that various tissues locally produce Epo in response to physical or metabolic stress. Thus, not only its circulating erythrocyte mass regulator activity but also the recently discovered nonhematological actions are being thoroughly investigated in order to fulfill the specific Epo delivery requirements for each therapeutic approach.


Darbepoetin Alfa Recombinant Human Erythropoietin Cell Microencapsulation Cell Encapsulation Technology Cardiac Myocyte Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bert P. Pression Barométrique. Recherches de physiologie expérimentale. Paris: Masson 1878.Google Scholar
  2. 2.
    Carnot P, De Flandre C. Sur l’activite hemopoietique du serum au cours de la regeneration du sang. (Haemopoietic activity of the serum in blood regeneration). CR Acad Sci Paris 1906; 143:384–386.Google Scholar
  3. 3.
    Bondsdorff E, Jalavisto E. A humoral mechanism in anoxic erythrocytosis. Acta Physiol Scand 1948; 16:150–170.CrossRefGoogle Scholar
  4. 4.
    Jacobson LO, Goldwasser E, Fried W et al. Role of the kidney in erythropoiesis. Nature 1957; 179:633–634.PubMedCrossRefGoogle Scholar
  5. 5.
    Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem 1977; 252:5558–5564.PubMedGoogle Scholar
  6. 6.
    Jelkmann W. Biology of erythropoietin. Clin Investig 1994; 72:S3–10.PubMedGoogle Scholar
  7. 7.
    Laird J. Erythropoietin: Can we afford to use it? Can we afford not to? Transfus Med 2006; 16:204–205.PubMedCrossRefGoogle Scholar
  8. 8.
    Bachmann S, Le Hir M, Eckardt KU. Colocalisation of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 1993; 41:335–341.PubMedGoogle Scholar
  9. 9.
    Maxwell PH, Osmond MK, Pugh CW et al. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 1993; 44:1149–1162.PubMedCrossRefGoogle Scholar
  10. 10.
    Maxwell PH, Ferguson DJ, Nicholls LG et al. Sites of erythropoietin production. Kidney Int 1997; 51:393–401.PubMedCrossRefGoogle Scholar
  11. 11.
    Erslev AJ, Gabuzda TG. Pathophysiology of Blood. Philadelphia: W.B. Saunders, 1985.Google Scholar
  12. 12.
    Jelkmann W. Erythropoietin: structure, control of production and function. Physiol Rev 1992; 72:449–489.PubMedGoogle Scholar
  13. 13.
    Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol 2002; 69:265–274.PubMedCrossRefGoogle Scholar
  14. 14.
    King CE, Rodger J, Bartlett C et al. Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transaction. Exp Neurol 2007; 205:48–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Brettschneider J, Widl K, Schattauer D et al. Cerebrospinal fluid erythropoietin (EPO) in amyotrophic lateral sclerosis. Neurosci Lett 2007; 416:257–260.PubMedCrossRefGoogle Scholar
  16. 16.
    Fliser D, Haller H. Erythropoietin and treatment of non-anemic conditions—cardiovascular protection. Semin Hematol 2007; 44:212–217.PubMedCrossRefGoogle Scholar
  17. 17.
    Mocini D, Leone T, Tubaro M et al. Structure, production and function of erythropoietin: implications for therapeutical use in cardiovascular disease. Curr Med Chem 2007; 14:2278–2287.PubMedCrossRefGoogle Scholar
  18. 18.
    Watanabe D, Suzuma K, Matsui S et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 2005; 353:782–792.PubMedCrossRefGoogle Scholar
  19. 19.
    Forman CJ, Johnson DW, Nicol DL. Erythropoietin administration protects against functional impairment and cell death after ischaemic renal injury in pigs. BJU Int 2007; 99:162.PubMedCrossRefGoogle Scholar
  20. 20.
    King VR, Averill SA, Hewazy D et al. Erythropoietin and carbamylated erythropoietin are neuroprotective following spinal cord hemisection in the rat. Eur J Neurosci 2007; 26:90–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Tascilar O, Cakmak GK, Tekin IO et al. Protective effects of erythropoietin against acute lung injury in a rat model of acute necrotizing pancreatitis. World J Gastroenterol 2007; 13:6172–182.PubMedCrossRefGoogle Scholar
  22. 22.
    Sepodes B, Maio R, Pinto R et al. Recombinant human erythropoietin protects the liver from hepatic ischemia-reperfusion injury in the rat. Transpl Int 2006; 19:919–926.PubMedCrossRefGoogle Scholar
  23. 23.
    Guneli E, Cavdar Z, Islekel H et al. Erythropoietin protects the intestine against ischemia/reperfusion injury in rats. Mol Med 2007; 13:509–517.PubMedCrossRefGoogle Scholar
  24. 24.
    Fenjves ES, Ochoa MS, Gay-Rabinstein C et al. Adenoviral gene transfer of erythropoietin confers cytoprotection to isolated pancreatic islets. Transplantation 2004; 77:13–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamazaki T, Kanzaki M, Kamidono S et al. Effect of erythropoietin on leydig cell is associated with the activation of stat5 pathway. Mol Cell Endocrinol 2004; 213:193–198.PubMedCrossRefGoogle Scholar
  26. 26.
    Kao R, Xenocostas A, Rui T et al. Erythropoietin improves skeletal muscle microcirculation and tissue bioenergetics in a mouse sepsis model. Crit Care 2007; 11:R58.PubMedCrossRefGoogle Scholar
  27. 27.
    Stuckmann I, Evans S, Lassar AB. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol 2003; 255:334.PubMedCrossRefGoogle Scholar
  28. 28.
    Anagnostou A, Lee ES, Kessimian N et al. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 1990; 87:5978–5982.PubMedCrossRefGoogle Scholar
  29. 29.
    Bahlmann FH, de Groot K, Haller H et al. Erythropoietin: is it more than correcting anaemia? Nephrol Dial Transplant 2004; 19:20–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Lappin TR, Maxwell AP, Johnston PG. EPO’s alter ego: erythropoietin has multiple actions. Stem Cells 2002; 20:485–492.PubMedCrossRefGoogle Scholar
  31. 31.
    Thews O, Koenig R, Kelleher DK et al. Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy-induced anaemia. Br J Cancer 1998; 78:752–756.PubMedGoogle Scholar
  32. 32.
    Ning S, Hartley C, Molineux G et al. Darbepoietin alfa potentiates the efficacy of radiation therapy in mice with corrected or uncorrected anemia. Cancer Res 2005; 65:284–290.PubMedCrossRefGoogle Scholar
  33. 33.
    Stüben G, Pöttgen C, Knühmann K et al. Erythropoietin restores the anemia-induced reduction in radiosensitivity of experimental human tumors in nude mice. Int J Radiat Oncol Biol Phys 2003; 55:1358–1362.PubMedCrossRefGoogle Scholar
  34. 34.
    Pinel S, Barberi-Heyob M, Cohen-Jonathan E et al. Erythropoietin-induced reduction of hypoxia before and during fractionated irradiation contributes to improvement of radioresponse in human glioma xenografts. Int J Radiat Oncol Biol Phys 2004; 59:250–259.PubMedCrossRefGoogle Scholar
  35. 35.
    Stüben G, Thews O, Pöttgen C et al. Recombinant human erythropoietin increases the radiosensitivity of xenografted human tumours in anaemic nude mice. J Cancer Res Clin Oncol 2001; 127:346–350.PubMedCrossRefGoogle Scholar
  36. 36.
    Thews O, Kelleher DK, Vaupel P. Erythropoietin restores the anemia-induced reduction in cyclophosphamide cytotoxicity in rat tumors. Cancer Res 2001; 61:1358.PubMedGoogle Scholar
  37. 37.
    Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 2007; 26:489–502.PubMedCrossRefGoogle Scholar
  38. 38.
    Jelkmann W. Erythropoietin after a century of research: younger than ever. Eur J Haematol 2007; 78:183–205.PubMedCrossRefGoogle Scholar
  39. 39.
    Jadoul M, Vanrenterghem Y, Foret M et al. Darbepoetin alfa administered once monthly maintains haemoglobin levels in stable dialysis patients. Nephrol Dial Transplant 2004; 19:898–903.PubMedCrossRefGoogle Scholar
  40. 40.
    Cases A. The latest advances in kidney diseases and related disorders. Drug News Perspect 2007; 20:271–278.PubMedGoogle Scholar
  41. 41.
    Sytkowski AJ, Lunn ED, Risinger MA et al. An erythropoietin fusion protein comprised of identical repeating domains exhibits enhanced biological properties. J Biol Chem 1999; 274:24773–8.PubMedCrossRefGoogle Scholar
  42. 42.
    MacDougall IC, Eckardt KU. Novel strategies for stimulating erythropoiesis and potential new treatments for anaemia. Lancet 2006; 368:947–953.PubMedCrossRefGoogle Scholar
  43. 43.
    Bunn HF. New agents that stimulate erythropoiesis. Blood 2007; 109:868–873.PubMedCrossRefGoogle Scholar
  44. 44.
    Qureshi SA, Kim RM, Konteatis Z et al. Mimicry of erythropoietin by a nonpeptide molecule. Proc Natl Acad Sci USA 1999; 96:12156–161.PubMedCrossRefGoogle Scholar
  45. 45.
    Klingmuller U, Lorenz U, Cantley LC et al. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995; 80:729–738.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakano Y, Imagawa S, Matsumoto K et al. Oral administration of K-11706 inhibits GATA binding activity, enhances hypoxia-inducible factor 1 binding activity and restores indicators in an in vivo mouse model of anemia of chronic disease. Blood 2004; 104:4300–4307.PubMedCrossRefGoogle Scholar
  47. 47.
    Kwan JT, Pratt RD, The epoetin delta study group. Epoetin delta, erythropoietin produced in a human cell line, in the management of anaemia in predialysis chronic kidney disease patients. Curr Med Res Opin 2007; 23:307–311.PubMedCrossRefGoogle Scholar
  48. 48.
    Macdougall IC. Comparison of different dosing regimens (once weekly vs twice weekly and once weekly vs. once every two weeks) with epoetin delta in patients with chronic kidney disease: a randomized controlled trial. Trials 2007; 8:35.PubMedCrossRefGoogle Scholar
  49. 49.
    Hsieh MM, Linde NS, Wynter A et al. HIF—prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis and modest fetal hemoglobin expression in rhesus machaques. Blood 2007; 110:2140–2147.PubMedCrossRefGoogle Scholar
  50. 50.
    Nangaku M, Kojima I, Tanaka T et al. Novel drugs and the response to hypoxia: HIF stabilizers and prolyl hydroxylase. Recent Patents Cardiovasc Drug Discov 2006; 1:129–139.CrossRefGoogle Scholar
  51. 51.
    Maxwell P. HIF-1: An oxygen response system with special relevance to the kidney. J Am Soc Nephrol 2003; 14:2712–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Naffakh N, Danos O. Gene transfer for erythropoietin enhancement. Mol Med Today 1996; 2:343–348.PubMedCrossRefGoogle Scholar
  53. 53.
    Fattori E, Cappelletti M, Zampaglione I et al. Gene electro-transfer of an improved erythropoietin plasmid in mice and nonhuman primates. J Gene Med 2005; 7:228–236.PubMedCrossRefGoogle Scholar
  54. 54.
    Rivera VM, Gao GP, Grant RL et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 2005; 105:1424–430.PubMedCrossRefGoogle Scholar
  55. 55.
    Kakeda M, Hiratsuka M, Nagata K et al. Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene Ther 2005; 12:852–856.PubMedCrossRefGoogle Scholar
  56. 56.
    Schwenter F, Schneider BL, Pralong WF et al. Survival of encapsulated human primary fibroblasts and erythropoietin expression under xenogeneic conditions. Hum Gene Ther 2004; 15:669–680.PubMedCrossRefGoogle Scholar
  57. 57.
    Lippin Y, Dranitzki-Elhalel M, Brill-Almon E et al. Human erythropoietin gene therapy for patients with chronic renal failure. Blood 2005; 106:2280–2286.PubMedCrossRefGoogle Scholar
  58. 58.
    Kochendoerfer GG, Chen SY, Mao F et al. Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 2003; 299:884–887.PubMedCrossRefGoogle Scholar
  59. 59.
    Hojman P, Gissel H, Gehl J. Sensitive and precise regulation of haemoglobin after gene transfer of erythropoietin to muscle tissue using electroporation. Gene Ther 2007; 14:950–959.PubMedCrossRefGoogle Scholar
  60. 60.
    Sebestyén MG, Hegge JO, Noble MA et al. Progress toward a nonviral gene therapy protocol for the treatment of anemia. Hum Gene Ther 2007; 18:269–285.PubMedCrossRefGoogle Scholar
  61. 61.
    Terada Y, Tanaka H, Okado T et al. Ligand-regulatable erythropoietin production by plasmid injection and in vivo electroporation. Kidney Int 2002; 62:1966–1976.PubMedCrossRefGoogle Scholar
  62. 62.
    Maruyama H, Ataka K, Gejyo F et al. Long-term production of erythropoietin after electroporation-mediated transfer of plasmid DNA into the muscles of normal and uremic rats. Gene Ther 2001; 8:461–468.PubMedCrossRefGoogle Scholar
  63. 63.
    Stieger K, Le Meur G, Lasne F et al. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 2006; 13:967–975.PubMedCrossRefGoogle Scholar
  64. 64.
    Lebherz C, Auricchio A, Maguire AM et al. Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates. Hum Gene Ther 2005; 16:178–186.PubMedCrossRefGoogle Scholar
  65. 65.
    Binley K, Askham Z, Iqball S et al. Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood 2002; 100:2406–2413.PubMedCrossRefGoogle Scholar
  66. 66.
    Samakoglu S, Bohl D, Heard JM. Mechanisms leading to sustained reversion of β-thalassemia in mice by doxycycline-controlled Epo delivery from muscles. Mol Ther 2002; 6:793–803.PubMedCrossRefGoogle Scholar
  67. 67.
    Siprashvili Z, Khavari PA. Lentivectors for regulated and reversible cutaneous gene delivery. Mol Ther 2004; 9:93–100.PubMedCrossRefGoogle Scholar
  68. 68.
    Baek SC, Lin Q, Robbins PB et al. Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum Gene Ther 2001; 12:1551–1558.PubMedCrossRefGoogle Scholar
  69. 69.
    Seppen J, Barry SC, Harder B et al. Lentivirus administration to rat muscle provides efficient sustained expression of erythropoietin. Blood 2001; 98:594–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Oh TK, Quan GH, Kim HY et al. Correction of anemia in uremic rats by intramuscular injection of lentivirus carrying an erythropoietin gene. Am J Nephrol 2006; 26:326–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Venkatesan N, Uchino K, Amagase K et al. Gastro-intestinal patch system for the delivery of erythropoietin. J Control Release 2006; 111:19–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Lejnieks DV, Ramesh N, Lau S et al. Stomach implant for long-term erythropoietin expression in rats. Blood 1998; 92:888–93.PubMedGoogle Scholar
  73. 73.
    Pistel KF, Bittner B, Koll H et al. Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers: Influence of encapsulation technique and polymer composition on particle characteristics. J Control Release 1999; 59:309–25.PubMedCrossRefGoogle Scholar
  74. 74.
    Yeh MK, Chen JL, Chiang CH et al. The preparation of sustained release erythropoietin microparticle. J Microencapsul 2007; 24:82–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Lanza RP, Ecker DM, Kühtreiber WM et al. Transplantation of islets using microencapsulation: studies in diabetic rodents and dogs. J Mol Med 1999; 77:206–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Lanza RP, Kühtreiber WM, Ecker DM et al. A simple method for xenotransplanting cells and tissues into rats using uncoated alginate microreactors. Transplant Proc 1996; 28:835.PubMedGoogle Scholar
  77. 77.
    Calafiore R, Basta G, Luca G et al. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplant Proc 2006; 38:1156–7.PubMedCrossRefGoogle Scholar
  78. 78.
    King A, Sandler S, Andersson A. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J Biomed Mater Res 2001; 57:374–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Dove A. Cell-based therapies go live. Nat Biotechnol 2002; 20:339–43.PubMedCrossRefGoogle Scholar
  80. 80.
    BlancoBose WE, Schneider BL, Aebischer P. Inducing tolerance to a soluble foreign antigen by encapsulated cell transplants. Mol Ther 2006; 13:447–56.CrossRefGoogle Scholar
  81. 81.
    Schneider BL, Schwenter F, Pralong WF et al. Prevention of the initial host immuno-inflammatory response determines the long-term survival of encapsulated myoblasts genetically engineered for erythropoietin delivery. Mol Ther 2003; 7:506–14.PubMedCrossRefGoogle Scholar
  82. 82.
    Rinsch C, Dupraz P, Schneider BL et al. Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia. Kidney Int 2002; 62:1395–1401.PubMedCrossRefGoogle Scholar
  83. 83.
    Rinsch C, Régulier E, Déglon N et al. A gene therapy approach to regulated delivery of erythropoietin as a function of oxygen tension. Hum Gene Ther 1997; 8:1881–89.PubMedCrossRefGoogle Scholar
  84. 84.
    Rinsch C, Peduto G, Schneider BL et al. Inducing host acceptance to encapsulated xenogeneic myoblasts. Transplantation 2001; 71:345–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Thanos CG, Bintz BE, Emerich DF. The stability of alginate-polyornithine microcapsules is profoundly dependent on the site of transplantation. J Biomed Mater Res A 2007; 81:1–11.PubMedGoogle Scholar
  86. 86.
    Bunger CM, Tiefenbach B, Jahnke A et al. Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steriods. Biomaterials 2005; 26:2353–60.PubMedCrossRefGoogle Scholar
  87. 87.
    Orive G, De Castro M, Ponce S et al. Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther 2005; 12:283–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Déglon N, Heyd B, Tan SA et al. Central nervous system delivery of recombinant ciliary neurothrophic factor by polymer encapsulated differentiated C2C12 myoblasts. Hum Gene Ther 1996; 7:2135–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Régulier E, Schneider BL, Déglon N et al. Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts. Gene Ther 1998; 5:1014–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Garlepp MJ, Chen W, Tabarias H et al. Antigen processing and presentation by a murine myoblast cell line. Clin Exp Immunol 1995; 102:614–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Sommer B, Rinsch C, Payen E et al. Long-term doxycycline-regulated secretion of erytropoietin by encapsulated myoblasts. Mol Ther 2002; 6:155–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Klöck G, Frank H, Houben R et al. Production fo purified alginate suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 1994; 40:638–43.PubMedCrossRefGoogle Scholar
  93. 93.
    Jork A, Thürmer F, Cramer H et al. Biocompatible alginate from freshly collected laminaria palida for implantation. Appl Microbiol Biotechnol 2000; 53:224–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Robitaille R, Pariseau JF, Leblond FA et al. Studies on small (<350 μm) alginate-poly-L-lysine microcapsules: III. Biocompatibility of smaller versus standard microcapsules. J Biomed Mater Res A 1999; 44:116–20.CrossRefGoogle Scholar
  95. 95.
    Lum ZP, Krestow M, Tai IT et al. Xenografts of rat islets into diabetic mice: an evaluation of new smaller capsules. Transplantation 1992; 53:1180–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Chicheportiche D, Reach G. In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules. Diabetologia 1988; 31:54–57.PubMedGoogle Scholar
  97. 97.
    Schrezenmeir J, Gerö L, Laue C et al. The role of oxygen supply in islets transplantation. Transplant Proc 1992; 24:2925–29.PubMedGoogle Scholar
  98. 98.
    De Vos P, Hamel AF, Tatarkiewicz K. Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 2002; 45:159–173.PubMedCrossRefGoogle Scholar
  99. 99.
    Schwenter F, Déglon N, Aebischer P. Optimization of human erythropoietin secretion of MLV-infected human primary fibroblasts used for encapsulated cell therapy. J Gene Med 2003; 5:246–257.PubMedCrossRefGoogle Scholar
  100. 100.
    Macdougall IC, Gray SJ, Elston O et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol 1999; 10:2392–2395.PubMedGoogle Scholar
  101. 101.
    Sohmiya M, Kakiba T, Kato Y. Therapeutic use of continuous subcutaneous infusion of recombinant human erythropoietin in malnourished predyalisis anemic patients with diabetic nephropathy. Eur J Endocrinol 1998; 139:367–370.PubMedCrossRefGoogle Scholar
  102. 102.
    Leinfelder U, Brunnenmeier F, Cramer H et al. A highly sensitive cell assay for validation of purification regimes of alginates. Biomaterials 2003; 24:4161–172.PubMedCrossRefGoogle Scholar
  103. 103.
    Juste S, Lessard M, Henley N et al. Effect of poly-l-lysine coating on macrophage activation by alginate-based microcapsules: assessment using a new in vivo method. J Biomed Mater Res A 2005; 72:389–398.PubMedGoogle Scholar
  104. 104.
    Orive G, Ponce S, Hernández RM et al. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 2002; 23:3825–3831.PubMedCrossRefGoogle Scholar
  105. 105.
    Orive G, Hernández RM, Gascón AR et al. Survival of different cell lines in alginate-agarose microcapsules. Eur J Pharm Sci 2003; 18:23–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Orive G, Carcaboso AM, Gascón AR et al. Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 2005; 6:927–931.PubMedCrossRefGoogle Scholar
  107. 107.
    Orive G, Tam SK, Pedraz JL et al. Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials 2006; 27:3691–700.PubMedCrossRefGoogle Scholar
  108. 108.
    Martijin de Groot MS, Schuurs TA, Leuvenink HGD et al. Macrophage overgrowth affects neighboring nonovergrown encapsulated islets. J Surg Res 2003; 115:235–241.CrossRefGoogle Scholar
  109. 109.
    Ponce S, Orive G, Hernández RM et al. In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules. J Control Release 2006; 116:28–34.PubMedCrossRefGoogle Scholar
  110. 110.
    Murua A, De Castro M, Orive G et al. In vitro characterization and in vivo functionality of erythropoietin-secreting cells immobilized in alginate—poly-L-lysine—alginate microcapsules. Biomacromolecules 2007; 8:3302–3307.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Ainhoa Murua
    • 1
  • Gorka Orive
    • 1
  • Rosa M Hernández
    • 1
  • José Luis Pedraz
    • 1
  1. 1.Faculty of Pharmacy, Laboratory of Pharmacy and Pharmaceutical TechnologyUniversity of the Basque CountryVitoria-GasteizSpain

Personalised recommendations