Cell Microencapsulation

  • Grace J. Lim
  • Shirin Zare
  • Mark Van Dyke
  • Anthony Atala
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 670)


In the past several decades, many attempts have been made to prevent the rejection of transplanted cells by the immune system. Cell encapsulation is primary machinery for cell transplantation and new materials and approaches were developed to encapsulate various types of cells to treat a wide range of diseases. This technology involves placing the transplanted cells within a biocompatible membrane in attempt to isolate the cells from the host immune attack and enhance or prolong their function in vivo. In this chapter, we will review the situation of cell microencapsulation field and discuss its potentials and challenges for cell therapy and regeneration of tissue function.


Chromaffin Cell Semipermeable Membrane Cell Encapsulation Bovine Chromaffin Cell Capsule Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster JL, Williams G, Williams LJ et al. Differentiation of transplanted microencapsulated fetal pancreatic cells. Transplantation 2007; 83:1440–1448.CrossRefPubMedGoogle Scholar
  2. 2.
    LaRosa DF, Rahman AH, Turka LA. The innate immune system in allograft rejection and tolerance. J Immunol 2007; 178:7503–7509.PubMedGoogle Scholar
  3. 3.
    Cacciarelli TV, Reyes J, Jaffe R et al. Primary tacrolimus (FK506) therapy and the long-term risk of posttransplant lymphoproliferative disease in pediatric liver transplant recipients. Pediatr Transplant 2001; 5:359–364.CrossRefPubMedGoogle Scholar
  4. 4.
    Fairbanks KD, Eustace JA, Fine D et al. Renal function improves in liver transplant recipients when switched from a calcineurin inhibitor to sirolimus. Liver Transpl 2003; 9:1079–1085.CrossRefPubMedGoogle Scholar
  5. 5.
    Masri M, Rizk S, Barbari A et al. An assay for the determination of sirolimus levels in the lymphocyte of transplant patients. Transplant Proc 2007; 39:1204–1206.CrossRefPubMedGoogle Scholar
  6. 6.
    Barry E, Alvarez JA, Scully RE et al. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother 2007; 8:1039–1058.CrossRefPubMedGoogle Scholar
  7. 7.
    Zimmermann H, Zimmermann D, Reuss R et al. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005; 6:491–501.CrossRefGoogle Scholar
  8. 8.
    Visted T, Bjerkvig R, Enger PO. Cell encapsulation technology as a therapeutic strategy for CNS malignancies. Neuro Oncol 2001; 3:201–210.PubMedGoogle Scholar
  9. 9.
    Chang TM. Therapeutic applications of polymeric artificial cells. Nat Rev Drug Discov 2005; 4:221–235.CrossRefPubMedGoogle Scholar
  10. 10.
    Orive G, Hernandez RM, Rodriguez Gascon A et al. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004; 22:87–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Rafael E, Wu GS, Hultenby K et al. Iimproved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transplant 2003; 12:407–412.PubMedGoogle Scholar
  12. 12.
    Shimi SM, Newman EL, Hopwood D et al. Semi-permeable microcapsules for cell culture: ultra-structural characterization. J Microencapsul 1991; 8:307–316.CrossRefPubMedGoogle Scholar
  13. 13.
    Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210:908–910.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang L, Shelton RM, Cooper PR et al. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 2003; 24:3475–3481.CrossRefPubMedGoogle Scholar
  15. 15.
    Trivedi N, Keegan M, Steil GM et al. Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplantation 2001; 71:203–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Peirone M, Ross CJ, Hortelano G et al. Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J Biomed Mater Res 1998; 15:587–596.CrossRefGoogle Scholar
  17. 17.
    Martinsen A, Skjak-Braek G, Smidsrod O. Alginate as immobilization material. I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol Bioeng 1989; 33:79–89.CrossRefPubMedGoogle Scholar
  18. 18.
    Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation lie those seen in man. Pain 1988; 33:87–107.CrossRefPubMedGoogle Scholar
  19. 19.
    Hama AT, Sagen J. Alleviation of neuropathic pain symptoms by xenogeneic chromaffin cell grafts in the spinal subarachnoid space. Brain Res 1994; 651:183–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Dulong JL, Legallais C. A theoretical study of oxygen transfer including cell necrosis for the design of a bioartificial pancreas. Biotechnol Bioeng 2007; 96:990–998.CrossRefPubMedGoogle Scholar
  21. 21.
    Sun Y, Ma X, Zhou D et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996; 98:1417–1422.CrossRefPubMedGoogle Scholar
  22. 22.
    Sakai S, Ono T, Ijima H et al. Synthesis and transport characterization of alginate/aminopropylsilicate/ alginate microcapsule: application to bioartificial pancreas, Biomaterials 2001; 22:2827–2834.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen Calafiore R, Basta G, Luca G et al. Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians. Ann N Y Acad Sci 1999; 875:219–232.CrossRefGoogle Scholar
  24. 24.
    Wang T, Lacik I, Brissova M et al. An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 1997; 15:385–362.CrossRefGoogle Scholar
  25. 25.
    Iwata H, Takai T, Kobayashi K et al. Strategy for developing microbeads applicable to islet xenotransplantation into a spontaneous diabetic NOD mouse. J Biomed Mater Res 1994; 28:1201–1207.CrossRefPubMedGoogle Scholar
  26. 26.
    Gappa H, Baudys M, Koh JJ et al. The effect of zinc-crystallized glucagon-like peptide-1 on insulin secretion of macroencapsulated pancreatic islets. Tissue Eng 2001; 7:35–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Tatarkiewicz K, Sitarek E, Fiedor P et al. In vitro and in vivo evaluation of protamine-heparin membrane for microencapsulation of rat Langerhans islets. Artif Organs 1994; 18:736–739.CrossRefPubMedGoogle Scholar
  28. 28.
    Chandy T, Mooradian DL, Rao GH. Evaluation of modified alginate-chitosan-polyethylene glycol microcapsules for cell encapsulation. Artif Organs 1999; 23:894–903.CrossRefPubMedGoogle Scholar
  29. 29.
    Haque T, Chen H, Ouyang W et al. In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Bioitechnol Lett 2005; 27:317–322.CrossRefGoogle Scholar
  30. 30.
    Sefton MV, Hwang JR, Babensee J. Selected aspects of the microencapsulation of mammalian cells in HEMA-MMA. Ann N Y Acad Sci 1997;831:260–270.CrossRefPubMedGoogle Scholar
  31. 31.
    Koo J, Chang TM. Secretion erythropoietin from microencapsulated rat kidney cells: preliminary results. Int J Artif Organs 1993; 16:557–560.PubMedGoogle Scholar
  32. 32.
    Hasse C, Klock G, Schlosser A et al. Parathyroid allotransplantation without immunosuppression. Lancet 1997; 350:1296–1297.CrossRefPubMedGoogle Scholar
  33. 33.
    Aebischer P, Buchser E, Joseph JM et al. Transplantation in humans of encapsulated xenogeneic cells without immunosuppression. A preliminary report. Transplantation 1994; 58:1275–1277.Google Scholar
  34. 34.
    Kim YM, Jeon YH, Jin GC et al. Immunoisolated chromaffin cells implanted into the subarachnoid space of rats reduce cold allodynia in a model of neuropathic pain: a novel application of microencapsulation technology. Artifi. Organs 2004; 28:1059–1066.CrossRefGoogle Scholar
  35. 35.
    Grunder T, Gaissmaier C, Fritz J et al. Bone morphogenetic protein-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 2004; 12:559–567.CrossRefPubMedGoogle Scholar
  36. 36.
    Orive G, Hemandez RM, Gascon AR et al. Cell encapsulation: promise and progress. Nat Med 2003; 9:104–107.CrossRefPubMedGoogle Scholar
  37. 37.
    Lindvall O, Rehncrona S, Brundin P et al. Neural transplantation in Parkinson’s disease: the Swedish experience. Prog Brain Res 1990; 82:729–734.CrossRefPubMedGoogle Scholar
  38. 38.
    Winn SR, Hammang JP, Emerich DF et al. Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons. Proc Natl Acad Sci USA 1994; 91:2324–2328.CrossRefPubMedGoogle Scholar
  39. 39.
    Guttinger M, Padrun V, Pralong WF et al. Seizure suppression and lack of adenosine A1 receptor desensitization after focal long-term delivery of adenosine by encapsulated myoblasts. Exp Neurol 2005; 193:53–54.CrossRefPubMedGoogle Scholar
  40. 40.
    Xu W, Liu L, Charles IG. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J 2002; 16:213–215.PubMedGoogle Scholar
  41. 41.
    Colton CK. (1995). Implantable biohybrid artificial organs. Cell Transplant 2002; 4:415–436.CrossRefGoogle Scholar
  42. 42.
    Canaple L, Rehor A, Hunkeler D. Improving cell encapsulation through size control, Journal of Biomaterials Science, Polymer ed 2002; 13:783–796.Google Scholar
  43. 43.
    Chicheportiche D, Reach G. In vitro kinetics of insulin release by microencapsulated rat islets Effect of the size of the microcapsules. Diabetologia 1988; 31:54–57.PubMedGoogle Scholar
  44. 44.
    Kelley RJ, Worth GH, Roddick-Lanzilotta AD et al. The production of soluble keratin derivatives. International Pat No WO 03/011894 A1 2003.Google Scholar
  45. 45.
    Emerich DF, Winn SR, Harper J et al. Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol 1994; 349:148–164.CrossRefPubMedGoogle Scholar
  46. 46.
    Brodie JC, Humes HD. Stem cell approaches for the treatment of renal failure. Pharmacol Rev 2005; 57:299–313.CrossRefPubMedGoogle Scholar
  47. 47.
    Liu ZC, Chang TM. Increased viability of transplanted hepatocytes when hepatocytes are co-encapsulated with bone marrow stem cells using a novel method. Artif Cells Blood Substit Immobil Biotechnol 2002; 30:99–112.CrossRefPubMedGoogle Scholar
  48. 48.
    Aebischer P, Tresco PA, Sangen J et al. Transplantation of microencapsulated bovine chromaffin cells reduces lesion-induced rotational asymmetry in rats. Brain Res 1991; 560:43–49.CrossRefPubMedGoogle Scholar
  49. 49.
    Xue Y, Gao J, Xi Z et al. Microencapsulated bovine chromaffin cell xenografts into hemiparkinsonian rats: A drug induced rotational behavior and histological changes analysis. Artificial Organ 2001; 25:131–135.CrossRefGoogle Scholar
  50. 50.
    Aebischer P, Schluep M, Deglon N et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 1996; 2:696–699.CrossRefPubMedGoogle Scholar
  51. 51.
    Joki T, Machluf M, Atala A et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol 2001; 19:35–39.CrossRefPubMedGoogle Scholar
  52. 52.
    Yano A, Shingo T, Takeuchi A et al. Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J Neurosurg 2005; 103:104–114.CrossRefPubMedGoogle Scholar
  53. 53.
    Sortwell CE, Petty G Kramer J. Sagen: In vivo release of catecholamines from xenogeneic chromaffin cell grafts with antidepressive activities. Exp Neurol 1994; 130:1–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Czech K, Sagen J. Update on cellular transplantation into the CNS as a novel therapy for chronic pain. Prog Neurobiol 1995; 46:507–522.CrossRefPubMedGoogle Scholar
  55. 55.
    Winn SR, Emerich DF. Managing chronic pain with encapsulated cell implants releasing catecholamines and endogenous opioids. Frontiers in Bioscience 2005; 10:367–378.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang Y, Wang W, Xie Y et al. In vivo culture of encapsulated endostatin-secreting Chinese hamster ovary cells for systemic tumor inhibition 2007; 18:474–481.Google Scholar
  57. 57.
    Moskalenko V, Ulrichs K, Kerscher A et al. Preoperative evaluation of microencapsulated human parathyroid tissue aids selection of the optimal bioartificial graft for human parathyroid allotransplantation. Transpl Int 2007; 19.Google Scholar
  58. 58.
    Tibell A, Rafael E, Wennberg L et al. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmunosuppressed humans. Cell Transplant 2001; 10:591–599.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Grace J. Lim
    • 1
  • Shirin Zare
    • 1
  • Mark Van Dyke
    • 1
  • Anthony Atala
    • 1
  1. 1.Department of Urology, Institute for Regenerative MedicineWake Forest UniversityWinston SalemUSA

Personalised recommendations