Inorganic Nanoporous Membranes for Immunoisolated Cell-Based Drug Delivery

  • Adam Mendelsohn
  • Tejal Desai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 670)


Materials advances enabled by nanotechnology have brought about promising approaches to improve the encapsulation mechanism for immunoisolated cell-based drug delivery. Cell-based drug delivery is a promising treatment for many diseases but has thus far achieved only limited clinical success. Treatment of insulin dependent diabetes mellitus (IDDM) by transplantation of pancreatic β-cells represents the most anticipated application of cell-based drug delivery technology. This review outlines the challenges involved with maintaining transplanted cell viability and discusses how inorganic nanoporous membranes may be useful in achieving clinical success.


Islet Transplantation Silicon Membrane Alumina Membrane Titanium Foil Nanoporous Alumina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perlow MJ, Brain grafting as a treatment for parkinson’s disease. Neurosurgery 1987; 20(2):335–42.PubMedGoogle Scholar
  2. 2.
    Roberts T, De Boni U, Sefton MV. Dopamine secretion by PC12 cells microencapsulated in a hydroxyethyl methacrylate—methyl methacrylate copolymer. Biomaterials 1996; 17(3):267–75.PubMedGoogle Scholar
  3. 3.
    Machluf M et al. Microencapsulation of leydig cells: a system for testosterone supplementation. Endocrinology 2003; 144(11):4975–9.PubMedGoogle Scholar
  4. 4.
    Dixit V, Gitnick G. Transplantation of microencapsulated hepatocytes for liver function replacement. J Biomater Sci Polym Ed 1995; 7(4):343–57.PubMedGoogle Scholar
  5. 5.
    Banting FG, Best CH, Collip JB et al. Pancreatic extracts in the treatment of diabetes mellitus: preliminary report. CMAJ 1922; 12(3):141–146.Google Scholar
  6. 6.
    Minino AM et al. Deaths: final data for 2004. Natl Vital Stat Rep 2007; 55(19):1–119.PubMedGoogle Scholar
  7. 7.
    Catargi B. Current status and future of implantable insulin pumps for the treatment of diabetes. Expert Rev Med Devices 2004; 1(2):181–5.PubMedGoogle Scholar
  8. 8.
    Gray DW. Encapsulated islet cells: the role of direct and indirect presentation and the relevance to xenotransplantation and autoimmune recurrence. Br Med Bull 1997; 53(4):777–88.PubMedGoogle Scholar
  9. 9.
    de Vos P et al. Association between macrophage activation and function of micro-encapsulated rat islets. Diabetologia 2003; 46(5):666–73.PubMedGoogle Scholar
  10. 10.
    Bertuzzi F et al. Tissue factor and CCL2/monocyte chemoattractant protein-1 released by human islets affect islet engraftment in type 1 diabetic recipients. J Clin Endocrinol Metab 2004; 89(11):5724–8.PubMedGoogle Scholar
  11. 11.
    Piro S et al. Bovine islets are less susceptible than human islets to damage by human cytokines. Transplantation 2001; 71(1):21–6.PubMedGoogle Scholar
  12. 12.
    Voltarelli JC et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. P 2007; 297(14):1568–76.Google Scholar
  13. 13.
    Gummert JF, Ikonen T, Morris RE. Newer immunosuppressive drugs: a review. J Am Soc Nephrol 1999; 10(6):1366–80.PubMedGoogle Scholar
  14. 14.
    Penn I. Post-transplant malignancy: the role of immunosuppression. Drug Saf 2000; 23(2):101–13.PubMedGoogle Scholar
  15. 15.
    Bretzel RG. Current status and perspectives in clinical islet transplantation. J Hepatobiliary Pancreat Surg 2000; 7(4):370–3.PubMedGoogle Scholar
  16. 16.
    Shapiro AM et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4):230–8.PubMedGoogle Scholar
  17. 17.
    Ryan EA et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54(7):2060–9.PubMedGoogle Scholar
  18. 18.
    Efrat S. Cell replacement therapy for type 1 diabetes. Trends Mol Med 2002; 8(7):334–39.PubMedGoogle Scholar
  19. 19.
    D’Amour KA et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006; 24(11):1392–401.PubMedGoogle Scholar
  20. 20.
    Gray DW. Comment on “reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection”. Xenotransplantation 2004; 11(5):394–5.PubMedGoogle Scholar
  21. 21.
    Lacy PE, Davie JM, Finke EH. Prolongation of islet allograft survival following in vitro culture (24 degrees C) and a single injection of ALS. Science 1979; 204(4390):312–3.PubMedGoogle Scholar
  22. 22.
    Rogers SA et al. Islet cell engraftment and control of diabetes in rats after transplantation of pig pancreatic anlagen. Am J Physiol Endocrinol Metab 2004; 286(4):E502–9.PubMedGoogle Scholar
  23. 23.
    Hammerman MR. Transplantation of embryonic organs—kidney and pancreas. Am J Transplant 2004; 4(Suppl 6):14–24.PubMedGoogle Scholar
  24. 24.
    Eventov-Friedman S et al. Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Med 2006; 3(7):e215.PubMedGoogle Scholar
  25. 25.
    Mandel TE. Fetal islet xenotransplantation in rodents and primates. J Mol Med 1999; 77(1):155–60.PubMedGoogle Scholar
  26. 26.
    Bisceglie VV. Uber die antineoplastiche Immunitat. E Krebsforch 1933; 40(141).Google Scholar
  27. 27.
    Algire GH, Legallais FY. Recent developments in the transparent-chamber technique as adapted to the mouse. J Natl Cancer Inst 1949; 10(2):225–53, incl 8 pl.PubMedGoogle Scholar
  28. 28.
    Algire GH, Weaver JM, Prehn RT. Growth of cells in vivo in diffusion chambers. I. Survival of homografts in immunized mice. J Natl Cancer Inst 1954; 15(3):493–507.PubMedGoogle Scholar
  29. 29.
    Prehn RT, Weaver JM, Algire GH. The diffusion-chamber technique applied to a study of the nature of homograft resistance. J Natl Cancer Inst 1954; 15(3):509–17.PubMedGoogle Scholar
  30. 30.
    Weaver JM, Algire GH, Prehn RT. The growth of cells in vivo in diffusion chambers. II. The role of cells in the destruction of homografts in mice. J Natl Cancer Inst 1955; 15(6):1737–67.PubMedGoogle Scholar
  31. 31.
    Moskalewski S. Isolation and culture of the islets of langerhans of the guinea pig. Gen Comp Endocrinol 1965; 44:342–53.PubMedGoogle Scholar
  32. 32.
    Lanza RP, Hayes JL, Chick WL. Encapsulated cell technology. Nat Biotechnol 1996; 14(9):1107–11.PubMedGoogle Scholar
  33. 33.
    Maki T. Islet transplantation in the future: Use of a bioartificial pancreas. J Hep Bil Pancr Surg 1996; 3:275–279.Google Scholar
  34. 34.
    Scharp DW, Mason NS, Sparks RE. Islet immuno-isolation: the use of hybrid artificial organs to prevent islet tissue rejection. World J Surg 1984; 8(2):221–9.PubMedGoogle Scholar
  35. 35.
    Slater NJ, Raftery AT, Cope GH. The ultrastructure of human abdominal mesothelium. J Anat 1989; 167:47–56.PubMedGoogle Scholar
  36. 36.
    Chick WL, Like AA, Lauris V. Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 1975; 187(4179):847–9.PubMedGoogle Scholar
  37. 37.
    Knazek RA et al. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 1972; 178(56):65–6.PubMedGoogle Scholar
  38. 38.
    Orsetti A et al. Implantation of a bio-artificial insulin distributor in dogs, using islets of Langerhans from different animal species. C R Seances Soc Biol Fil 1978; 172(1):144–50.PubMedGoogle Scholar
  39. 39.
    Sun AM et al. The use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes 1977; 26(12):1136–9.PubMedGoogle Scholar
  40. 40.
    Tze WJ et al. Implantable artificial endocrine pancreas unit used to restore normoglycaemia in the diabetic rat. Nature 1976; 264(5585):466–7.PubMedGoogle Scholar
  41. 41.
    Sullivan SJ et al. Biohybrid artificial pancreas: long-term implantation studies in diabetic, pancreatectomized dogs. Science 1991; 252(5006):718–21.PubMedGoogle Scholar
  42. 42.
    Theodorou N A, Howell SL. An assessment of diffusion chambers for use in pancreatic islet cell transplantation. Transplantation 1979; 27(5):350–2.PubMedGoogle Scholar
  43. 43.
    Colton CK. Implantable biohybrid artificial organs. Cell Transplant 1995; 4(4):415–36.PubMedGoogle Scholar
  44. 44.
    Yang H et al. Comparative studies of in vitro and in vivo function of three different shaped bioartificial pancreases made of agarose hydrogel. Biomaterials 1994; 15(2):113–20.PubMedGoogle Scholar
  45. 45.
    Chang TM. Semipermeable microcapsules. Science 1964; 146:524–5.PubMedGoogle Scholar
  46. 46.
    Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210(4472):908–10.PubMedGoogle Scholar
  47. 47.
    O’Shea GM, Goosen MF, Sun AM. Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim Biophys Acta 1984; 804(1):133–6.PubMedGoogle Scholar
  48. 48.
    Klock G et al. Production of purified alginates suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 1994; 40(5):638–43.PubMedGoogle Scholar
  49. 49.
    Otterlei M et al. Induction of cytokine production from human monocytes stimulated with alginate. J Immunother 1991; 10(4):286–91.PubMedGoogle Scholar
  50. 50.
    Sefton MV, Stevenson WTK. Microencapsulation of live animal cells using polyacrylates. Adv Polym Sci 1993; 107:143–197.Google Scholar
  51. 51.
    Sawhney AS, Pathak CP, Hubbell JA. Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate-poly (l-lysine) microcapsules for enhanced biocompatibility. Biomaterials 1993; 14(13):1008–16.PubMedGoogle Scholar
  52. 52.
    Peterson KP, Peterson CM, Pope EJ. Silica sol-gel encapsulation of pancreatic islets. Proc Soc Exp Biol Med 1998; 218(4):365–9.PubMedGoogle Scholar
  53. 53.
    Wang T et al. An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 1997; 15(4):358–62.PubMedGoogle Scholar
  54. 54.
    de Vos P et al. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006; 27(32):5603–17.PubMedGoogle Scholar
  55. 55.
    Orive G et al. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004; 22(2):87–92.PubMedGoogle Scholar
  56. 56.
    Calafiore R et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 2006; 29(1):137–8.PubMedGoogle Scholar
  57. 58.
    Soon-Shiong P et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994; 343(8903):950–1.PubMedGoogle Scholar
  58. 61.
    King A. Microencapsulation of islets of Langerhans: impact of cellular overgrowth. Ups J Med Sci 2001; 106(3):161–74.PubMedGoogle Scholar
  59. 62.
    De Vos P et al. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 1999; 48(7):1381–8.PubMedGoogle Scholar
  60. 63.
    Sabatine MS et al. Delayed rejection of soluble tumor necrosis factor receptor-secreting tumor allografts. Transplantation 1998; 65(1):113–20.PubMedGoogle Scholar
  61. 64.
    Sandberg JO et al. Treatment with an interleukin-1 receptor antagonist protein prolongs mouse islet allograft survival. Diabetes 1993; 42(12):1845–51.PubMedGoogle Scholar
  62. 65.
    Dunleavy M. Polymeric membranes. A review of applications. Med Device Technol 1996; 7(4):14–6, 18–21.PubMedGoogle Scholar
  63. 66.
    Weber CJ et al. Evaluation of graft-host response for various tissue sources and animal models. Ann N Y Acad Sci 1999; 875:233–54.PubMedGoogle Scholar
  64. 67.
    De Vos P et al. Factors influencing the adequacy of microencapsulation of rat pancreatic islets. Transplantation 1996; 62(7):888–93.PubMedGoogle Scholar
  65. 68.
    Teramura Y, Kaneda Y, Iwata H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly (vinyl alcohol) anchored to poly (ethylene glycol)-lipids in the cell membrane. Biomaterials 2007; 28:4818–4825.PubMedGoogle Scholar
  66. 69.
    Wang RN, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol 1999; 163(2):181–90.PubMedGoogle Scholar
  67. 70.
    Gates RJ et al. Return to normal of blood-glucose, plasma-insulin and weight gain in New Zealand obese mice after implantation of islets of langerhans. Lancet 1972; 2(7777):567–70.PubMedGoogle Scholar
  68. 71.
    Strautz RL. Studies of hereditary-obese mice (obob) after implantation of pancreatic islets in Millipore filter capsules. Diabetologia 1970; 6(3):306–12.PubMedGoogle Scholar
  69. 72.
    Beck J et al. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng 2007; 13(3):589–99.PubMedGoogle Scholar
  70. 73.
    Lysaght MJ et al. Recent progress in immunoisolated cell therapy. J Cell Biochem 1994; 56(2):196–203.PubMedGoogle Scholar
  71. 74.
    Loudovaris T et al. Correction of diabetic nod mice with insulinomas implanted within Baxter immunoisolation devices. J Mol Med 1999; 77(1):219–22.PubMedGoogle Scholar
  72. 76.
    Smith C et al. Diffusion characteristics of microfabricated silicon nanopore membranes as immunoisolation membranes for use in cellular therapeutics. Diabetes Technol Ther 2005; 7(1):151–62.PubMedGoogle Scholar
  73. 77.
    Desai TA, et al. Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomed Microdevices 1999; 1(2):131–8.PubMedGoogle Scholar
  74. 78.
    Desai TA et al. Microfabricated immunoisolating biocapsules. Biotechnol Bioeng 1998; 57(1):118–20.PubMedGoogle Scholar
  75. 79.
    Storrs R et al. Preclinical development of the islet sheet. Ann N Y Acad Sci 2001; 944:252–66.PubMedGoogle Scholar
  76. 80.
    Chu WH et al. Silicon membrane nanofilters from sacrificial oxide removal. JMEMS 1999; 8(1):34–42.Google Scholar
  77. 81.
    Leoni L, Desai TA. Micromachined biocapsules for cell-based sensing and delivery. Adv Drug Deliv Rev 2004; 56(2):211–29.PubMedGoogle Scholar
  78. 82.
    Leoni L, Attiah, Darlene et al. Nanoporous platforms for cellular sensing and delivery. Sensors 2002; 2:111–120.Google Scholar
  79. 83.
    Desai TA et al. Nanoporous anti-fouling silicon membranes for biosensor applications. Biosens Bioelectron 2000; 15(9–10):453–62.PubMedGoogle Scholar
  80. 84.
    Leoni L, Boiarski, Anthony et al. Characterization of nanoporous membranes for immunoisolation: Diffusion properties and tissue effects. Biomedical Microdevices 2002; 4(2):131–139.Google Scholar
  81. 85.
    Desai TA, Hansford DJ, Ferrari M. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J of Mem Sci 1999(159):221–231.Google Scholar
  82. 86.
    Desai TA et al. Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 2004; 56(11):1661–73.PubMedGoogle Scholar
  83. 87.
    Desai TA, Hansford DJ, Ferrari M. Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng 2000; 17(1):23–36.PubMedGoogle Scholar
  84. 88.
    La Flamme KE et al. Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. Diabetes Technol Ther 2005; 7(5):684–94.PubMedGoogle Scholar
  85. 89.
    Chou SY et al. Sub-10 nm imprint lithography and applications. J Vac Sci Technol B 1997; 15(6):2897–2904.Google Scholar
  86. 90.
    Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995; 268:1466–1468.PubMedGoogle Scholar
  87. 91.
    Masuda H, Satoh M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 1996; 35:126–129.Google Scholar
  88. 92.
    Gong D et al. Controlled molecular release using nanoporous alumina capsules. Biomedical Microdevices 2003; 5(1):75–80.Google Scholar
  89. 93.
    Popat KC et al. Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir 2004; 20(19):8035–41.PubMedGoogle Scholar
  90. 94.
    Itoh N et al. Strengthened porous alumina membrane tube prepared by means of internal anodic oxidation. Microporous and Mesoporous Materials 1998; 20:333–337.Google Scholar
  91. 95.
    Swan EE et al. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res A 2005; 72(3):288–95.PubMedGoogle Scholar
  92. 96.
    Li AP et al. Polycrystalline nanopore arrays with hexagonal ordering on aluminum. J Vac Sci Technol A 1999; 17(4):1428–1431.Google Scholar
  93. 97.
    Thomas P et al. Immuno-allergological properties of aluminium oxide (Al2O3)ceramics and nickel sulfate in humans. Biomaterials 2003; 24(6):959–66.PubMedGoogle Scholar
  94. 98.
    La Flamme KE et al. Biocompatibility of nanoporous alumina membranes for immunoisolation. Biomaterials 2007; 28(16):2638–45.PubMedGoogle Scholar
  95. 99.
    Popat KC, Desai TA. Poly (ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. Biosens Bioelectron 2004; 19(9):1037–44.PubMedGoogle Scholar
  96. 100.
    Beranek R, Hildebrand H, Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF Electrolytes. Electrochemcial and Solid-State Letters 2003; 6(3):B12–B14.Google Scholar
  97. 101.
    Cai Q et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 2004; 20(1):230–236.Google Scholar
  98. 102.
    Gong D, Grimes CA, Varghese OK. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 2001; 16(12):3331–3334.Google Scholar
  99. 103.
    Paulose M et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 um in length. J of Phys Chem B 2006; 110(33):16179–16184.Google Scholar
  100. 104.
    Ruan C et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B 2005; 109:15754–15759.PubMedGoogle Scholar
  101. 105.
    Zhao J et al. In situ templated synthesis of anatase single-crystal nanotube arrays. Nanotechnology 2005; 16:2450–2454.PubMedGoogle Scholar
  102. 106.
    Paulose M, Prakasam E. Haripriya et al. TiO2 Nanotube arrays of 1000 micron length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 2007; 111(41):14992–14997.Google Scholar
  103. 107.
    Mor GK, Varghese, Oomman K et al. Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 2003; 18(11).Google Scholar
  104. 108.
    Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem Int Ed 2005; 44:2100–2102.Google Scholar
  105. 109.
    Choi J et al. Porous niobium oxide films prepared by anodization-annealing-anodization. Nanotechnology 2007; 18.Google Scholar
  106. 110.
    Sieber I, Kannan B, Schmuki P. Self-assembled porous tantalum oxide prepared in H2SO4/HF Electrolytes. Electrochemical and Solid-State Letters 2005; 8(3):J10–J12.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media. 2010

Authors and Affiliations

  • Adam Mendelsohn
    • 1
  • Tejal Desai
    • 1
  1. 1.UCSF/UCB Joint Graduate Group in BioengineeringUniversity of California, San Francisco, University of CaliforniaBerkeleyUSA

Personalised recommendations