Thermal Management of Flip Chip Packages

  • Richard C. Chu
  • Robert E. Simons
  • Madhusudan Iyengar
  • Lian-Tuu Yeh


Generally speaking, the electrical energy that is supplied to electronic devices is ultimately transformed into and dissipated as heat. This generation of heat is accompanied by a temperature rise at the heat source followed by the transport of heat to regions of lower temperature within and outside the electronics module or package. Within the package transport of heat occurs via a process of thermal conduction in the solid material making up the package. As the heat reaches the external surfaces of the package it is usually transferred to a cooling fluid (e.g., air) via a thermal convection process. In the case of lower power components thermal radiation may also play a role in transferring heat to the surrounding environment. The temperatures within the electronics package will continue to rise until the rate of heat removal from the package is equal to the rate of heat generation. It is worthwhile to note that, even if purposeful active measures were not taken to cool the package, the laws of nature or physics would prevail and limit the temperature rise. However, in most instances, the resulting temperatures would be too high. As shown in Fig. 9.1, based upon the results of a study conducted under a US Air Force Avionics Integrity Program, temperature was identified as a causal factor in 55% of electronic failures [1]. It might be noted that in most commercial applications, electronic packages are not subjected to nearly as severe an environment in terms of vibration, dust or humidity as military avionics, so the percentage of failures caused by temperature are likely to occupy a larger “piece of the pie.” In addition to the effect of temperature on electronic device reliability, it can also play an important role on CMOS circuit performance. Consequently, it is necessary to provide satisfactory cooling for electronic packages by design and not by accident.


Thermal Resistance Heat Sink Heat Pipe Natural Convection Heat Transfer Cold Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Reynell M (1990) Thermal analysis using computational fluid dynamics. Electron Packag ProdGoogle Scholar
  2. 2.
    Chu RC, Simons RE, Ellsworth MJ, Schmidt RR, Cozzolino V (2004) Review of cooling technologies for computer products. IEEE Trans Device Mater Reliab 4(4):568–585CrossRefGoogle Scholar
  3. 3.
    Incropera FP, DeWitt DP (2006) Introduction to heat transfer. Wiley, Hoboken, NJGoogle Scholar
  4. 4.
    Holman JP (2009) Heat transfer. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Yeh L-T, Chu RC (2002) Thermal management of microelectronic equipment: heat transfer theory, analysis methods and design practices. ASME, New YorkCrossRefGoogle Scholar
  6. 6.
    Howell JR, Siegal R, Menguc MP (2010) Thermal radiation heat transfer, 5th edn. CRC Press, New YorkGoogle Scholar
  7. 7.
    Modest MF (2003) Radiative heat transfer, 2nd edn. Academic, New YorkGoogle Scholar
  8. 8.
    Simons RE Using a matrix inverse method to solve a thermal resistance network., Accessed Feb 2013
  9. 9.
    Simons RE, Antonetti VW, Nakayama W, Oktay S (1997) Heat transfer in electronic packages. In: Tummala RR, Rymazewski EJ, Klopfenstein AG (eds) Microelectronics packaging handbook—technology drivers (Part I). Chapman & Hall, New York, NYGoogle Scholar
  10. 10.
    Wei X, Marston K, Sikka K (2008) Thermal modeling for warpage effects in organic packages. In: Proceedings of the intersociety conference on thermal phenomena (ITherm), Lake Buena Vista, FLGoogle Scholar
  11. 11.
    Watwe A, Vishwanath R (2003) Thermal implications of non-uniform die power and CPU performance. In: Proceedings of ASME InterPack conference, Maui, Hawaii, USAGoogle Scholar
  12. 12.
    Banerjee K, Mahajan R. Advanced cooling strategies—assembly technology development. Intel corporation., Accessed Dec 2005
  13. 13.
    Iyengar M, Schmidt R (2006) Analytical modeling for prediction of hot spot chip junction temperature for electronics cooling applications. In: Proceedings of the InterSociety conference on thermal phenomena (ITherm), San Diego, CAGoogle Scholar
  14. 14.
    Hamann H, Lacey J, Weger A, Wakil J (2006) Spatially-resolved imaging of microprocessor power (SIMP): hotspots in microprocessors. In: Proceedings of the InterSociety conference on thermal phenomena (ITherm), San Diego, CAGoogle Scholar
  15. 15.
    Hamann H, Weger A, Lacey J, Cohen E, Atheton C Power distribution measurements of the dual core PowerPCTM970MP microprocessor. In: Proceedings of 2006 Solid-State Circuits Conference (ISSCC 2006), San Francisco, CAGoogle Scholar
  16. 16.
    Etessan-Yazdani K, Hamann H, Asheghi M (2007) Spatial frequency domain analysis of heat transfer in microelectronic chips with applications to temperature aware computing. In: Proceedings of the ASME InterPack conference, Vancouver, CanadaGoogle Scholar
  17. 17.
    Torresola J, Chiu C, Chrysler G, Grannes D, Mahajan R, Prasher R, Watwe A (2005) Density factor approach to representing impact of die power maps on thermal management. IEEE Trans Adv Packag 28(4):1521–3323CrossRefGoogle Scholar
  18. 18.
    Culham JR, Yovanovich YY, Lemczyk TF (2000) Thermal characterization of electronic packages using a three dimensional Fourier series solution. Trans ASME J Electron Packag 122:233–239CrossRefGoogle Scholar
  19. 19.
    Muzychka YS, Culham JR, Yovanovich YY (2003) Thermal spreading resistance of eccentric heat sources on rectangular flux channels. Trans ASME J Electron Packag 125:178–185CrossRefGoogle Scholar
  20. 20.
    Muzychka YS (2004) Influence coefficient method for calculating discrete heat source temperature on finite convectively cooled substrates. In: Proceedings of the ITHERM conference, vol 1, pp 394–402Google Scholar
  21. 21.
    Sikka K (2004) An analytical temperature prediction method for a chip power map. In: Proceedings of the SEMITHERM conference, San Jose, CAGoogle Scholar
  22. 22.
    Kadambi V, Abuaf N (1985) An analysis of the thermal response of power chip packages. IEEE Trans Electron Devices ED-32(6):1024–1033CrossRefGoogle Scholar
  23. 23.
    Prasher R, Chang J, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C (2005) Nano- and micro technology-based next-generation package-level cooling solutions. Intel Technol J 9(4):285–296Google Scholar
  24. 24.
    Furman BK, Lauro PA, Shih DY, Van Kessel T, Martin Y, Colgan EG, Zou W, Iruvanti S, Wakil J, Schmidt R, Iyengar MK (2005) Metal TIM’s for high power cooling applications. International microelectronics and packaging society—IMAPS, advanced thermal workshop, Palo AltoGoogle Scholar
  25. 25.
    Song S, Lee S, Au V (1994) Closed form equation for thermal constriction/spreading resistances with variable resistance boundary condition. In: Proceedings of the 1994 IEPS conference, pp 111–121, Atlanta, GAGoogle Scholar
  26. 26.
    Kennedy DP (1960) Spreading resistance in cylindrical semiconductor devices. J Appl Phys 31:1490–1497CrossRefGoogle Scholar
  27. 27.
    Lee S, Song S, Au V, Moran KP (1995) Constriction/spreading resistance model for electronic packaging. In: Proceedings of the 4th ASME/JSME thermal engineering joint conference, vol 4. pp 199–206, Maui, HawaiiGoogle Scholar
  28. 28.
    Fischer TS, Zell FA, Sikka KK, Torrance KE (1996) Efficient heat transfer approximation for the chip-on-substrate problem. J Electron Packag 118:271–279CrossRefGoogle Scholar
  29. 29.
    Kraus AD, Bar-Cohen A (1995) Design and analysis of heat sinks. Wiley, New YorkGoogle Scholar
  30. 30.
    Iyengar M, Bar-Cohen A (2001) Design for manufacturability of SISE parallel plate forced convection heat sinks. IEEE Trans Compon Packaging Technol 24(2):150–158CrossRefGoogle Scholar
  31. 31.
    Ellsworth J et al (2011) An overview of the IBM power 775 supercomputer. In: Proceedings of the ASME InterPack conference, Portland, ORGoogle Scholar
  32. 32.
    Iyengar M, David M, Kamath V, Kochparambil B, Graybill D, Schultz M, Gaynes M, Simons R, Schmidt R, Chainer T (2012) Server liquid cooling with chiller-less data center design to enable significant energy savings. In:Proceedings of 28th IEEE SEMI-THERM Symposium, San Jose, CAGoogle Scholar
  33. 33.
    Iyengar M, Garimella S (2006) Analytical modeling for prediction of hot spot chip junction temperature for electronics cooling applications. In: Proceedings of the InterSociety conference on thermal phenomena (ITherm)Google Scholar
  34. 34.
    Schmidt RR (2000) Low temperature electronic cooling. 6(3):18–24Google Scholar
  35. 35.
    Peeples JW (2001) Vapor compression cooling for high performance applications. Electron Cooling 7(3):16–24Google Scholar
  36. 36.
    Schmidt RR, Notohardjono BD (2002) High-end server low-temperature cooling. IBM J Res Dev 46(6):739CrossRefGoogle Scholar
  37. 37.
    Goth GF, Kearney DJ, Meyer U, Porter D (2004) Hybrid cooling with cycle steering in the IBM eServer z990. IBM J Res Dev 48(3/4):409CrossRefGoogle Scholar
  38. 38.
    Torok JG, Bosco FE, Brodsky WL, Furey EF, Goth GF, Kearney DJ, Loparco JJ, Peets MT, Pizzolato KL, Porter DW, Ruehle G, White WH (2009) Packaging design of the IBM system z10 enterprise class platform central electronic complex. IBM J Res Dev 53(1):9CrossRefGoogle Scholar
  39. 39.
    Bar-Cohen A, Wang P (2011) On-chip thermal management of nanoelectronic hot spots. In: InterPack tutorial, ASME InterPack conference, Portland, ORGoogle Scholar
  40. 40.
    Kolodzey JS (1981) CRAY-1 computer technology. IEEE Trans CHMT-4(2):181–186Google Scholar
  41. 41.
    Armstrong RJ (1967) Cooling components with boiling halocarbons. IEEE Trans PMP-3(4):135–142Google Scholar
  42. 42.
    Cochran DL (1968) Boiling heat transfer in electronics. Electron Packag Prod 8(7):CL3–CL7Google Scholar
  43. 43.
    Preston SB, Shillabeer RN (1970) Direct liquid cooling of microelectronics. In: InterNEPCON proceedings:10–31Google Scholar
  44. 44.
    Simons RE (1996) Direct liquid immersion cooling for high density microelectronics. Electron Cooling 2(2):24–29Google Scholar
  45. 45.
    Bar-Cohen A, Arik M, Ohadi M (2006) Direct liquid cooling of high heat flux micro and nano electronic components. Proc IEEE 94(8):1549–1570CrossRefGoogle Scholar
  46. 46.
    Bergles AE, Bar-Cohen A (1994) Immersion cooling of digital computers. In: Kakac S, Yuncu H, Hijikata K (eds) Cooling of electronic systems. Kluwer Academic Publishers, Boston, MAGoogle Scholar
  47. 47.
    Tuma P, Hesselroth D, Brodbeck T (2009) Next-generation dielectric heat transfer fluids for cooling military electronics., Accessed Feb 2013
  48. 48.
    Danielson RD, Krajewski N, Brost J (1986) Cooling a superfast computer. Electron Packag Prod 26(7):44–45Google Scholar
  49. 49.
    Knickerbocker JU, Andry PS, Dang B, Horton RR, Interrante MJ, Patel CS, Polastre RJ, Sakuma K, Sirdeshmukh R, Sprogis EJ, Sri-Jayantha SM, Stephens AM, Topol AW, Tsang CK, Webb BC, Wright SL (2008) Three-dimensional silicon integration. IBM J Res Dev 52(6):571–581CrossRefGoogle Scholar
  50. 50.
    Rhett W, Wilson J, Mick S, Xu J, Hua H, Mineo C, Sule A, Steer M, Franzon P (2005) Demystifying 3D ICs: the pros and cons of going vertical. IEEE Des Test Comput 22(6):498–510CrossRefGoogle Scholar
  51. 51.
    Hummler K (2011) Stacked IC packaging with TSV true 3D without glasses. In: Presentation at the electronics packaging symposium in Binghamton, New YorkGoogle Scholar
  52. 52.
    Sri-Jayantha SM, McVicker G, Bernstein K, Knickerbocker JU (2008) Thermomechanical modeling of 3D electronic packages. IBM J Res Dev 52(6):539–540CrossRefGoogle Scholar
  53. 53.
    Emma PG, Kursun E (2008) Is 3D chip technology the next growth engine for performance improvement? IBM J Res Dev 52(6):541–552CrossRefGoogle Scholar
  54. 54.
    Dang B, Wright SL, Andry PS, Sprogis EJ, Tsang CK, Interrante MJ, Webb BC, Polastre RJ, Horton RR, Patel CS, Sharma A, Zheng J, Sakuma K, Knickerbocker JU (2008) 3D chip stacking with C4 technology. IBM J Res Dev 52(6):571–581CrossRefGoogle Scholar
  55. 55.
    Koester SJ, Young AM, Yu RR, Purushothaman S, Chen K-N, La Tulipe DC Jr, Rana N, Shi L, Wordeman MR, Sprogis EJ (2008) Wafer-level 3D integration technology. IBM J Res Dev 52(6):583–597CrossRefGoogle Scholar
  56. 56.
    Sakuma K, Andry PS, Tsang CK, Wright SL, Dang B, Patel CS, Webb BC, Maria J, Sprogis EJ, Kang SK, Polastre RJ, Horton RR, Knickerbocker JU (2008) 3D chip-stacking technology with through-silicon vias and low-volume lead free interconnections. IBM J Res Dev 52(6):611–622CrossRefGoogle Scholar
  57. 57.
    Oprins H, Cherman V (2012) Modeling and experimental characterization of hot spot dissipation in 3D chip stacks. Electron Cooling:18–23Google Scholar
  58. 58.
    Bar-Cohen A, Geisler K, Rahim E (2008) Pool and flow boiling in narrow gaps—application to 3D chip stacks. In: 5th European thermal-sciences conference, NetherlandsGoogle Scholar
  59. 59.
    Brunschwiler T, Paredes S, Drechsler U, Michel B, Cesar W, Leblebici Y, Wunderle B, Reichl H (2011) Heat-removal performance scaling of interlayer cooled chip stacks. In: Proceedings of the thermal and thermomechanical phenomena in electronic systems (12th ITherm), San Diego, CAGoogle Scholar
  60. 60.
    Venkatadri V, Sammakia B, Srihari K, Santos D (2011) A review of recent advances in thermal management in three dimensional chip stacks in electronic systems. ASME J Electro Packag 133(4)Google Scholar
  61. 61.
    Avram Bar-Cohen Thermal management technologies. DARPA presentation., Accessed Feb 2013
  62. 62.
    Cola B (2010) Carbon nano tubes as high performance thermal interface materials. Electron Cooling 16(1):24–29Google Scholar
  63. 63.
    Tilak V, Nagarkar K, Tsukalakos L, Wetzel T (2010) Thermal management system with graphene based thermal interface material. US Patent Application US 2010/0128439A1, 2010Google Scholar
  64. 64.
    Pashayi K, Fard HR, Lai F, Iruvanti S, Plawsky J, Borca-Tasciuc T (2012) High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J Appl Phys 111, 104310 (2012)Google Scholar
  65. 65.
    Smith B, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10(9):2281–2297MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Li R, Sharma R, Arik M (2011) Energy conversion efficiency of synthetic jets. In: Proceedings of the ASME 2011 Pacific Rim technical conference & exposition on packaging and integration of electronic and photonic systems (InterPACK), paper number IPACK2011-52034, Portland, USAGoogle Scholar
  67. 67.
    Mahalingam R, Heffington S, Jones L, Williams R (2007) Synthetic jets for forced air cooling of electronics. Electron Cooling 13(2):12–18Google Scholar
  68. 68.
    Acikalin T, Garimella SV, Raman A, Petroski J (2007) Characterization and optimization of the thermal performance of miniature piezoelectric fans. Int J Heat Fluid Flow 28(4):806–820CrossRefGoogle Scholar
  69. 69.
    Schiltz DJ, Garimella SV, Fisher TS (2004) Microscale ion-driven air flow over a flat plate. In: ASME 2004 heat transfer/fluids engineering summer conference, paper no. HT-FED2004-56470, pp 463–468, Charlotte, NCGoogle Scholar
  70. 70.
    Gupta MP, Cho M, Mukhopadhya S, Kumar S (2012) Thermal investigation into power multiplexing for homogenous many-core processors. ASME J Heat Transf 134:061401CrossRefGoogle Scholar
  71. 71.
    Godfrey S (1996) An Introduction to thermoelectric coolers. Electron Cooling 2(3):30–33Google Scholar
  72. 72.
    Nolas GS, Slack GA, Cohn JL, Scujman SB (1998) The next generation of thermoelectric materials. In: Proceedings of the 17th international conference on thermoelectrics, Nagoya, JapanGoogle Scholar
  73. 73.
    Simons RE (2000) Application of thermoelectric coolers for module cooling enhancement. Electron Cooling 6(2):18–24Google Scholar
  74. 74.
    Simons RE, Ellsworth MJ, Chu RC (2005) An assessment of module cooling enhancement with thermoelectric coolers. J Heat Trans 127(1):76–84CrossRefGoogle Scholar
  75. 75.
    Johnson DA, Bierschenk J (2005) Latest developments in thermoelectrically enhanced heat sinks. Electron Cooling 11(3):24–32Google Scholar
  76. 76.
    Lasance CJM, Simons RE (2005) Advances in high-performance cooling for electronics. Electron Cooling 11(4):22–39Google Scholar
  77. 77.
    DeBock HP, Icoz T (2007) Evaluation on use of thermoelectric devices for electronics cooling. In: Proceedings of IPACK 2007, Vancouver, CanadaGoogle Scholar
  78. 78.
    Habbe B, Nurnus J (2011) Thin film thermoelectrics today and tomorrow. Electron Cooling:24–31Google Scholar
  79. 79.
    Shakouri A, Zhang Y, Fukutani K (2006) Solid-state microrefrigerator on a chip. Electron Cooling 12(3)Google Scholar
  80. 80.
    Ramanathan S, Chrysler GM (2006) Solid-state refrigeration for cooling microprocessors. IEEE Trans Compon Packag Technol 29(1):179–183CrossRefGoogle Scholar
  81. 81.
    Snyder GJ, Soto M, Alley R, Koester D, Conner R (2006) Hot spot cooling using embedded thermoelectric coolers. In: Proceedings 22nd IEEE semi-therm symposium, Dallas, TXGoogle Scholar
  82. 82.
    Lee KH, Kim OJ (2007) Simulation of the cooling system using thermoelectric micro-coolers for hot spot mitigation. In: Proceedings of 2007 international conference on thermoelectrics, Jeju, KoreaGoogle Scholar
  83. 83.
    Yang B, Wang P, Bar-Cohen A (2007) Mini-contact enhanced thermoelectric cooling of hot spots in high power devices. IEEE Trans Compon Packaging Technol 30(3):432–438CrossRefGoogle Scholar
  84. 84.
    Wang P, Bar-Cohen A, Yang B (2007) Enhanced thermoelectric cooler for on-chip hot spot cooling. In: Proceedings of IPACK 2007, Vancouver, CanadaGoogle Scholar
  85. 85.
    Alley R, Soto M, Kwark L, Crocco P, Koester D (2008) Modeling and validation of on-die cooling of dual-core CPU using embedded thermoelectric devices. In: Proceedings 24th IEEE SEMI-THERM symposium, San Jose, CAGoogle Scholar
  86. 86.
    Azar K (1997) Thermal measurements in electronics cooling. CRC, Boca Raton, FLGoogle Scholar
  87. 87.
    Michalski L, Eckersdorf K (2001) Temperature measurement. Wiley, New York, NYCrossRefGoogle Scholar
  88. 88.
    Childs PRN (2001) Practical temperature measurement. Butterworth-Heinemann, Woburn, MAGoogle Scholar
  89. 89.
    Sofia JW (1997) Electrical temperature measurement using semiconductors. Electron Cooling 3(1):22–25Google Scholar
  90. 90.
    Rencz M (1996) The increasing importance of thermal test dies, Electron Cooling 2(2)Google Scholar
  91. 91.
    Claassen A, Shaukatullah H (1997) Comparison of diodes and resistors for measuring chip temperature during thermal characterization of electronic packages using thermal test chips. In: Proceedings of the 13th SEMI-THERM symposium, Austin, TXGoogle Scholar
  92. 92.
    EIA/JESD51-1 (1995) Integrated circuits thermal measurement method—electrical test method (single semiconductor device)., Accessed Feb 2013
  93. 93.
    Guenin B (2002) Thermal standards for the 21st Century. In: Proceeding of 18th IEEE SEMI-THERM symposium, San Jose, CAGoogle Scholar
  94. 94.
    Andrews JA (1988) Package thermal resistance model dependency on equipment design. In: Proceedings of 4th IEEE SEMI-THERM symposium, San Diego, CAGoogle Scholar
  95. 95.
    Bar-Cohen A (1989) θjc characterization of chip packages—justification, limitations, and future. In: Proceedings of the 5th IEEE SEMI-THERM symposium, San Diego, CAGoogle Scholar
  96. 96.
    Rosten HI, Parry JD, Lasance CJM, Vinke H, Temmerman W, Nelemans W, Assouad Y, Gautier T, Slattery O, Cahill C, O’Flattery M, Lacaze C, Zelianoy P (1997) Final report to SEMITHERM XIII on the European-funded project DELPHI—the development of libraries and physical models for an integrated design environment. In: Proceedings of the 13th IEEE SEMI-THERM symposium, Austin, TXGoogle Scholar
  97. 97.
    Shidore S (2007) Compact thermal modeling in electronics design. Electron Cooling 13(2)Google Scholar
  98. 98.
    JEDEC JESD 15-4 (2008) DELPHI thermal l compact model guideline., Accessed Feb 2013
  99. 99.
    Mincowycz WJ, Sparrow EM, Schneider GE, Murthy JY (2006) Handbook of numerical heat transfer, 2nd edn. Wiley, New YorkGoogle Scholar
  100. 100.
    Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New YorkMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Richard C. Chu
    • 1
  • Robert E. Simons
    • 2
  • Madhusudan Iyengar
    • 3
  • Lian-Tuu Yeh
    • 4
  1. 1.IBM CorporationHopewell JunctionUSA
  2. 2.IBM CorporationPoughkeepsieUSA
  3. 3.Storage Hardware SystemsMenlo ParkUSA
  4. 4.Thermal ConsultantDallasUSA

Personalised recommendations