Conductive Adhesives for Flip-Chip Applications

Chapter

Abstract

Significant progress has been made to improve electrically conductive adhesive (ECA) and nonconductive adhesive (NCA) technology. Recent material development of various anisotropic conductive adhesives/films (ACAs/ACFs) and their applications in flip chip are reviewed first. Then research achievements in material development and in electrical and mechanical aspects of isotropic conductive adhesives (ICAs), and their applications in flip chip and advanced packages are reviewed in details. In addition, latest advances of NCA technology for flip-chip applications are also reviewed.

Keywords

Surfactant Migration Microwave Anisotropy Cobalt 

References

  1. 1.
    Cdenhead R, DeCoursey D (1985) Intl J Microelectron 8(3):14Google Scholar
  2. 2.
    Jagt JC (1998) IEEE Trans Compon Packag Manuf Tech A 21:215–225CrossRefGoogle Scholar
  3. 3.
    Ogunjimi AO, Boyle O, Whalley DC, Williams DJ (1992) J Electron Manuf 2:109–118CrossRefGoogle Scholar
  4. 4.
    Harris PG (1995) Soldering Surf Mount Technol 20:19–21CrossRefGoogle Scholar
  5. 5.
    Gilleo K (1995) Soldering Surf Mount Technol 19:12–17CrossRefGoogle Scholar
  6. 6.
    Liu J, Lai Z, Kristiansen H, Khoo C (1998) Proceedings of the 3rd international conference on adhesive joining & coating technology in electronics manufacturing. Binghamton, NY, pp 1–17Google Scholar
  7. 7.
    Corbett S, Dominano MJ (1997) Surf Mount Technol 48:48–52Google Scholar
  8. 8.
    Bolger J, Morano S (1984) Adhesives Age 17:17–20Google Scholar
  9. 9.
    Gilleo K (1995) Assembly with conductive adhesives. Soldering Surf Mount Technol (19):12–17Google Scholar
  10. 10.
    Hariss PG (1995) Conductive adhesives: a critical review of progress to date. Soldering Surf Mount Technol (20):19–21Google Scholar
  11. 11.
    Asai S, Saruta U, Tobita M, Takano M, Miyashita Y (1995) Development of an anisotropic conductive adhesive film (ACAF) from epoxy resins. J Appl Polym Sci 56:769–777CrossRefGoogle Scholar
  12. 12.
    Chang DD, Crawford PA, Fulton JA, McBride R, Schmidt MB, Sinitski RE, Wong CP (1993) An overview and evaluation of anisotropically conductive adhesive films for fine pitch electronic assembly. IEEE Trans Compon Hybrids Manuf Technol 16(8):320–326Google Scholar
  13. 13.
    Ando H, Kobayashi N, Numao H, Matsubara Y, Suzuki K (1985) Electrically conductive adhesive sheet. European Patent 0,147,856Google Scholar
  14. 14.
    Gilleo K (1987) An isotropic adhesive for bonding electrical components. European Patent 0,265,077Google Scholar
  15. 15.
    Pennisi R, Papageorge M, Urbisch G (1992) Anisotropic conductive adhesive and encapsulant materials. US Patent 5,136,365Google Scholar
  16. 16.
    Date H, Hozumi Y, Tokuhira H, Usui M, Horikoshi E, Sato T (1994) Anisotropic conductive adhesives for fine pitch interconnections. In: Proceedings of ISHM’94, Bologna, Italy, Sept 1994, pp 570–575Google Scholar
  17. 17.
    Liu J (2000) ACA bonding technology for low cost electronics packaging applications-current status and remaining challenges. In: Proceedings of 4th international conference on adhesive joining and coating technology in electronics manufacturing, Helsinki, Finland, Jun 2000, pp 1–15Google Scholar
  18. 18.
    Wu CML, Liu J, Yeung NH (2000) Reliability of ACF in Flip chip with various bump height. In: Proceedings of 4th international conference on adhesive joining and coating technology in electronics manufacturing, Helsinki, Finland, Jun 2000, pp 101–106Google Scholar
  19. 19.
    Kishimoto Y, Hanamura K (1998) Anisotropic conductive paste available for flip chip. In: Proceedings of 3rd international conference on adhesive joining and coating technology in electronics manufacturing, Binghamton, NY, Sept 1998, pp 137–143Google Scholar
  20. 20.
    Sugiyama K, Atsumi Y (1991) Conductive connecting structure. US Patent 4,999,460, 12 Mar 1991Google Scholar
  21. 21.
    Sugiyama K, Atsumi Y (1992) Conductive connecting method. US Patent 5,123,986, 23 Jun 1992Google Scholar
  22. 22.
    Sugiyama K, Atsumi Y (1993) Conductive bonding agent and a conductive connecting method. US Patent 5,180,888, 19 Jan 1993Google Scholar
  23. 23.
    Nagle R (1998) Evaluation of adhesive based flip-chip interconnect techniques. Int J Microelectron Packag 1:187–196Google Scholar
  24. 24.
    Kivilahti JK (1999) Design and modeling of solder-filled ACAs for flip-chip and flexible circuit applications. In: Liu J (ed) Conductive adhesives for electronics packaging. Electrochemical Publications Ltd, Port Erin, British Isles, pp 153–183Google Scholar
  25. 25.
    Vuorela M, Holloway M, Fuchs S, Stam F, Kivilahti J (2000) Bismuth-filled anisotropically conductive adhesive for flip-chip bonding. In: Proceedings of 4th international conference on adhesive joining and coating technology in electronics manufacturing, Helsinki, Finland, Jun 2000, pp 147–152Google Scholar
  26. 26.
    Torii A, Takizawa M, Sawano M (1998) The application of flip chip bonding technology using anisotropic conductive film to the mobile communication terminals. In: Proceedings of international electronics manufacturing technology/international microelectronics conference, Tokyo, Japan, Apr 1998, pp 94–99Google Scholar
  27. 27.
    Atarashi H (1990) Chip-on-glass technology using conductive particles and light-setting adhesives. In: Proceedings of the 1990 Japan international electronics manufacturing technology symposium, Tokyo, Japan, Jun 1990, pp 190–195Google Scholar
  28. 28.
    Matsubara H (1992) Bare-chip face-down bonding technology using conductive particles and light-setting adhesives. In: Proceedings of international microelectronics conference, Yokohama, Japan, pp 81–87Google Scholar
  29. 29.
    Endoh K, Nozawa K, Hashimoto N (1993) Development of ‘The Maple Method’. In: Proceedings of Japan international electronics manufacturing technology symposium, Kanazawa, Japan, pp 187–191Google Scholar
  30. 30.
    Sihlbom R, Dernevik M, Lai Z, Starski JP, Liu J (1998) Conductive adhesives for high-frequency applications. IEEE Trans Compon Packag Manuf Tech A 20(3):469–477CrossRefGoogle Scholar
  31. 31.
    Dernevik M, Sihlbom R, Axelsson K, Lai Z, Liu J, Starski P (1998) Electrically conductive adhesives at microwave frequencies. In: Proceedings of 48th IEEE electronic components & technology conference, Seattle, Washington, May 1998, pp 1026–1030Google Scholar
  32. 32.
    Yim MJ, Ryu W, Jeon YD, Lee J, Kim J, Paik K (1999) Microwave model of anisotropic conductive adhesive flip-chip interconnections for high frequency applications. In: Proceedings of 49th electronic components and technology conference, San Diego, CA, May 1999, pp 488–492Google Scholar
  33. 33.
    Gustafsson K, Mannan S, Liu J, Lai Z, Whalley D, Williams D (1997) The effect on ramping rate on the flip chip joint quality and reliability using anisotropically conductive adhesive film on FR4 substrate. In: Proceedings of 47th electronic components and technology conference, San Jose, CA, May 1997, pp 561–566Google Scholar
  34. 34.
    Connell G (1997) Condutive adhesive flip chip bonding for bumped and unbumped die. In: Proceedings of 47th electronic components and technology conference, San Jose, CA, May 1997, pp 274–278Google Scholar
  35. 35.
    Oguibe CN, Mannan SH, Whalley DC, Williams DJ (1998) Flip-chip assembly using anisotropic conducting adhesives: experimental and modelling results. In: Proceedings of 3rd international conference on adhesive joining and coating technology in electronics manufacturing, Binghamton, NY, Sept 1998, pp 27–33Google Scholar
  36. 36.
    Hirai H, Motomura T, Shimada O, Fukuoka Y (2000) Development of flip chip attach technology using Ag paste bump which formed on printed wiring board electrodes. In: Proceedings of international symposium on electronic materials & packaging, Hong Kong, China, Nov–Dec 2000, pp 1–6Google Scholar
  37. 37.
    Hotta Y, Maeda M, Asai F, Eriguchi F (1998) Development of 0.025 mm pitch anisotropic conductive film. In: Proceedings of 48th IEEE electronic components & technology conference, Seattle, Washington, May 1998, pp 1042–1046Google Scholar
  38. 38.
    Chan YC, Hung KC, Tang CW, Wu CML (2000) Degradation mechanisms of anisotropic conductive adhesive joints for flip chip on flex applications. In: Proceedings of 4th international conference on adhesive joining and coating technology in electronics manufacturing, Helsinki, Finland, Jun 2000, pp 141–146Google Scholar
  39. 39.
    Kristiansen H, Liu J (1998) Overview of conductive adhesive interconnection technologies for LCDs. IEEE Trans Compon Packag Manuf Tech A 21(2):208–214CrossRefGoogle Scholar
  40. 40.
    Moon K, Dong H, Maric R, Pothukuchi S, Hunt A, Li Y, Wong CP (2005) J Electron Mater 34:132–139CrossRefGoogle Scholar
  41. 41.
    Efremov MY, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry RS, Allen LH (2000) Phys Rev Lett 85:3560–3563CrossRefGoogle Scholar
  42. 42.
    Li Y, Moon K, Wong CP (2006) J Appl Polym Sci 99:1665–1673CrossRefGoogle Scholar
  43. 43.
    Li Y, Moon K, Wong CP (2004) Proceedings of 54th IEEE electronic components and technology conference, Las Vegas, NV, pp 1968–1974Google Scholar
  44. 44.
    Li Y, Wong CP (2005) Proceedings of 55th IEEE electronic components and technology conference, Lake Buena, FL, pp 1147–1154Google Scholar
  45. 45.
    Li Y, Moon K, Wong CP (2005) J Electron Mater 34:266–271CrossRefGoogle Scholar
  46. 46.
    Li Y, Moon K, Wong CP (2005) J Electron Mater 34:1573–1578CrossRefGoogle Scholar
  47. 47.
    Davies G, Sandstrom J (1976) Circuits Manufacturing 56–62Google Scholar
  48. 48.
    Harsanyi G, Ripka G (1985) Electrocompon Sci Technol 11:281–290Google Scholar
  49. 49.
    Di Giacomo G (1992) In: McHardy J, Ludwig F (eds) Electrochemistry of semiconductors and electronics: processes and devices. Noyes Publications, Park Ridge, NJ, pp 255–295Google Scholar
  50. 50.
    Manepalli R, Stepniak F, Bidstrup-Allen SA, Kohl P (1999) IEEE Trans Adv Packag 22:4–8CrossRefGoogle Scholar
  51. 51.
    Di Giacomo G (1997) Reliability of electronic packages and semi-conductor devices, Chapter 9. McGraw-Hill, New York, NYGoogle Scholar
  52. 52.
    Klein Wassink RJ (1987) Microelectron Int 9:9–12CrossRefGoogle Scholar
  53. 53.
    Shirai Y, Komagata M, Suzuki K (2001) Proceedings of the 1st international IEEE conference on polymers and adhesives in microelectronics and photonics, Potsdam Germany, pp 79–83Google Scholar
  54. 54.
    Schonhorn H, Sharpe LH (1983) US Patent 4,377,619Google Scholar
  55. 55.
    Brusic V, Frankel GS, Roldan J, Saraf R (1995) J Electrochem Soc 142:2591–2594CrossRefGoogle Scholar
  56. 56.
    Wang PI, Lu TM, Murarka SP, Ghoshal R (2007) US Patent 7,285,842Google Scholar
  57. 57.
    Li Y, Wong CP (2005) US Patent pendingGoogle Scholar
  58. 58.
    Li Y, Wong CP (2006) Appl Phys Lett 89:112Google Scholar
  59. 59.
    Toshioka H, Kobayashi M, Koyama K, Nakatsugi K, Kuwabara T, Yamamoto M, Kashihara H (2006) SEI Tech Rev 62:58–61Google Scholar
  60. 60.
    Lieber CM (2001) Science 293:1289–1292CrossRefGoogle Scholar
  61. 61.
    Prinz GA (1998) Science 282:1660–1663CrossRefGoogle Scholar
  62. 62.
    Martin CR, Menon VP (1995) Anal Chem 67:1920–1928CrossRefGoogle Scholar
  63. 63.
    Xu JM (2001) Appl Phys Lett 79:1039–1041CrossRefGoogle Scholar
  64. 64.
    Russell TP (2000) Science 290:2126–2129CrossRefGoogle Scholar
  65. 65.
    Lin R, Hsu Y, Chen Y, Cheng S, Uang R (2005) Proceedings of 55th IEEE electronic components and technology conference, Lake Buena, FL, pp 66–70Google Scholar
  66. 66.
    Li Y, Moon K, Wong CP (2006) Proceedings of 56th IEEE electronic components and technology conference, San Diego, CA, pp 1239–1245Google Scholar
  67. 67.
    Li Y, Zhang Z, Moon K, Wong CP (2006) US Patent pendingGoogle Scholar
  68. 68.
    Jana PB, Chaudhuri S, Pal AK, De SK (1992) Polym Eng Sci 32:448–456CrossRefGoogle Scholar
  69. 69.
    Malliaris A, Turner DT (1971) Influence of particle size on the electrical resistivity of compacted mixtures of polymers and metallic powders. J Appl Phys 42:614–618CrossRefGoogle Scholar
  70. 70.
    Ruschau GR, Yoshikawa S, Newnham RE (1992) Resistivities of conductive composites. J Appl Phys 73(3):953–959CrossRefGoogle Scholar
  71. 71.
    Agar JC, Lin KJ, Zhang R, Durden J, Lawrence K, Moon K-S, Wong CP (2010) ECTC, pp 1713–1718Google Scholar
  72. 72.
    Jagt JC (1998) Reliability of electrically conductive adhesive joints for surface mount applications: a summary of the state of the art. IEEE Trans Compon Packag Manuf Technol A 21(2):215–225CrossRefGoogle Scholar
  73. 73.
    Lutz MA, Cole RL (1990) High performance electrically conductive adhesives. Hybrid Circuits (23):27–30Google Scholar
  74. 74.
    Pujol JM, Prud'homme C, Quenneson ME, Cassat R (1989) Electroconductive adhesives: comparison of three different polymer matrices. Epoxy, polyimide, and silicone. J Adhesion 27:213–229CrossRefGoogle Scholar
  75. 75.
    Gonzales JIJ, Mena MG (1997) Moisture and thermal degradation of cyanate-ester-based die attach material. In: Proceedings of 47th electronic components and technology conference, San Jose, CA, May 1997, pp 525–535Google Scholar
  76. 76.
    Chien IY, Nguyen MN (1994) Low stress polymer die attach adhesive for plastic packages. In: Proceedings of 1994 electronic components and technology conference, San Diego, May 1994, pp 580–584Google Scholar
  77. 77.
    Galloway DP, Grosse M, Nguyen MN, Burkhart A (1995) Reliability of novel die attach adhesive for snap curing. In: Proceedings of the IEEE/CPMT international electronic manufacturing technology (IEMT) symposium, Austin, TX, Oct 1995, pp 141–147Google Scholar
  78. 78.
    Keusseyan RL, Dilday JL (1994) Electric contact phenomena in conductive adhesive interconnections. Int J Microcircuits Electron Packag 17(3):236–242Google Scholar
  79. 79.
    Antoon MK, Koenig JL (1981) Fourier-transform infrared study of the reversible interaction of water and a crosslinked epoxy matrix. J Polym Sci (Physics) 19:1567–1575Google Scholar
  80. 80.
    Antoon MK, Koenig JL (1981) Irreversible effects of moisture on the epoxy matrix in glass-reinforced composites. J Polym Sci (Physics) 19:197–212Google Scholar
  81. 81.
    Khoo CGL, Liu J (1996) Moisture sorption in some popular conductive adhesives. Circuit World 22(4):9–15Google Scholar
  82. 82.
    Pandiri SM (1987) The behavior of silver flakes in conductive epoxy adhesives. Adhesives Age 30:31–35Google Scholar
  83. 83.
    Günther B, Schäfer H (1996) Porous metal powders for conductive adhesives. In: Proceedings of the 2nd international conference on adhesive joining & coating technology in electronics manufacturing, Stockholm, Sweden, Jun 1996, pp 55–59Google Scholar
  84. 84.
    Kotthaus S, Gunther BH, Haug R, Schafer H (1996) Study of isotropically conductive adhesives filled with aggregates of nano-sized Ag-particles. In: Proceedings of the 2nd international conference on adhesive joining & coating technology in electronics manufacturing, Stockholm, Sweden, Jun 1996, pp 14–17Google Scholar
  85. 85.
    Pramanik PK, Khastgir D, De SK, Saha TN (1990) Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fibre. J Mater Sci 25:3848–3853CrossRefGoogle Scholar
  86. 86.
    Jana PB, Chaudhuri S, Pal AK (1992) Electrical conductivity of short carbon fiber-reinforced poly-chloroprene rubber and mechanism of conduction. Polym Eng Sci 32(6):448–456CrossRefGoogle Scholar
  87. 87.
    Chaudhari VR, Haram SK, Kulshreshtha SK (2007) Colloids Surf A 301:475–480CrossRefGoogle Scholar
  88. 88.
    Pal A, Shah S, Devi S (2007) Colloids Surf A 302:51–57CrossRefGoogle Scholar
  89. 89.
    Chen Z, Gao L (2007) Mater Res Bull 42:1657–1661CrossRefGoogle Scholar
  90. 90.
    Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) J Colloid Interface Sci 264:396CrossRefGoogle Scholar
  91. 91.
    Guzmán MG, Dille J, Godet S (2008) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Proc World Acad Sci Eng Technol 33:367–374Google Scholar
  92. 92.
    Hu Z, Xu T, Liu R, Li H (2004) Mater Sci Eng A 371:236–240CrossRefGoogle Scholar
  93. 93.
    Sun Y, Yin Y, Mayers B, Herricks T, Xia Y (2002) Chem Mater 14:4736–4745CrossRefGoogle Scholar
  94. 94.
    Hernandez EA, Posada B, Irizarry R, Castro ME (2004) A new wet chemical approach for selective synthesis of silver nanowires. NSTI Nanotech 2004 3:156–158Google Scholar
  95. 95.
    Korte KE, Skrabalak SE, Xia Y (2008) Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem 18:437–441CrossRefGoogle Scholar
  96. 96.
    Yokoyama A, Katsumata T, Fujii A, Yoneyama T (1992) New copper paste for CTF applications. In: IMC Proceedings, pp 376–338Google Scholar
  97. 97.
    Yim MJ et al (2007) Proceedings of electronic components and technology conference (ECTC), p 82Google Scholar
  98. 98.
    Nishikawa H (2008) 2nd Electronics system integration technology conference, p 825Google Scholar
  99. 99.
    Kang SK, Rai R, Purushothaman S (1997) Development of high conductivity lead (Pb)-free conducting adhesives. In: Proceedings of 47th electronic components and technology conference, San Jose, CA, May 1997, pp 565–570Google Scholar
  100. 100.
    Kang SK, Rai R, Purushothaman S (1998) Development of high conductivity lead (Pb)-free conducting adhesives. IEEE Trans Compon Packag Manuf Technol A 21(1):18–22CrossRefGoogle Scholar
  101. 101.
    Lin JK, Drye J, Lytle W, Scharr T, Subrahmanyan R, Sharma R (1996) Conductive polymer bump interconnects. In: Proceedings of 46th electronic components and technology conference, Orlando, FL, May 1996, pp 1059–1068Google Scholar
  102. 102.
    Seidowski T, Kriebel F, Neumann N (1998) Polymer flip chip technology on flexible substrates-development and applications. Proceedings of 3rd international conference on adhesive joining and coating technology in electronics manufacturing, Binghamton, NY, Sept 1998, pp 240–243Google Scholar
  103. 103.
    Estes RH (1998) Process and reliability characteristics of polymer flip chip assemblies utilizing stencil printed thermosets and thermo-plastics. In: Proceedings of 3rd international conference on adhesive joining and coating technology in electronics manufacturing, Binghamton, NY, Sept 1998, pp 229–239Google Scholar
  104. 104.
    Oh KE (1999) Flip chip packaging with micromachined conductive polymer bumps. IEEE J Select Topics Quantum Electron 5(1):119–126CrossRefGoogle Scholar
  105. 105.
    Lohokare SK, Lu Z, Schuetz CA, Prather DW (2006) Electrical characterization of flip-chip interconnects formed using a novel conductive-adhesive-based process. IEEE Trans Adv Packag 29(3):542–547CrossRefGoogle Scholar
  106. 106.
    Gaynes M, Kodnani R, Pierson M, Hoontrakul P, Paquette M (1998) Flip chip attach with thermoplastic electrically conductive adhesive. In: Proceedings of 3rd international conference on adhesive joining and coating technology in electronics manufacturing, Binghamton, NY, Sept 1998, pp 244–251Google Scholar
  107. 107.
    Bessho Y (1990) Chip on glass mounting technology of lysis for LCD module. In: Proceedings of international microelectronics conference, May 1990, pp 183–189Google Scholar
  108. 108.
    Clayton JE (2003) Proceedings of international symposium on microelectronics, Boston, MA, 16–20 Nov 2003, pp 1–7Google Scholar
  109. 109.
    Chang YW, Chiang TH, Chih Chena (2007) Appl Phys Lett 91:132113Google Scholar
  110. 110.
    Kong J, Yenilmez E, Tombler TW, Kim W, Dai H (2001) Phys Rev Lett 87:106801CrossRefGoogle Scholar
  111. 111.
    Yao Z, Kane CL, Dekker C (2000) Phys Rev Lett 84:2941–2944CrossRefGoogle Scholar
  112. 112.
    Nihei M, Horibe M, Kawabata A, Awano Y (2004) Proceedings of the IEEE interconnect technology conference, pp 251–253Google Scholar
  113. 113.
    Nihei M, Kondo D, Kawabata A, Sato S, Shioya H, Sakaue M, Iwai T, Ohfuti M, Awano Y (2005) Proceedings of the IEEE interconnect technology conference, pp 234–236Google Scholar
  114. 114.
    Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Höenlein W (2002) Microelectron Eng 64:399–408CrossRefGoogle Scholar
  115. 115.
    Li J, Stevens R, Delzeit L, Ng HT, Cassell A, Han J, Meyyappan M (2002) Appl Phys Lett 81:910–912CrossRefGoogle Scholar
  116. 116.
    Nihei M, Horibe M, Kawabata A, Awano Y (2004) Jpn J Appl Phys 43:1856–1859CrossRefGoogle Scholar
  117. 117.
    Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Nature 388:52–55CrossRefGoogle Scholar
  118. 118.
    Pan ZW, Xie SS, Chang BH, Wang CY, Lu L, Liu W, Zhou WY, Li WZ, Qian LX (1998) Nature 394:631–632CrossRefGoogle Scholar
  119. 119.
    Murakami Y, Maruyama S (2004) Chem Phys Lett 385:298–303CrossRefGoogle Scholar
  120. 120.
    Fujii T, Someya M (2006) US Patent 7,150,801Google Scholar
  121. 121.
    Ikuo Soga, Daiyu Kondo, Yoshitaka Yamaguchi, Taisuke Iwai, Masataka Mizukoshi, Yuji Awano, Kunio Yube, and Takashi Fujii (2008) Proceedings of electronic components and technology conference, pp 1390–1394Google Scholar
  122. 122.
    Eikelboom DWK, Bultman JH, Schönecker A, Meu-wissen MHH, Van Den Nieuwenhof MAJC, Meier DL (2002) Conductive adhesives for low-stress interconnection of thin back-contact solar cells. In: 29th IEEE photovoltaic specialists conference, May 2002, pp 403–406Google Scholar
  123. 123.
    Prasad SK (2004) Advanced wirebond interconnection technology. Springer, New YorkGoogle Scholar
  124. 124.
    Harman GG (1997) Wirebonding in microelectronics: materials processes reliability and yield, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  125. 125.
    Carson F (2007) Advanced 3D packaging and interconnect schemes. In: Ku-licke and Soffa symposium at Semicon, San Francisco, CAGoogle Scholar
  126. 126.
    Andrews LD, Caskey TC, McElrea SJS (2007) 3D Electrical interconnection using extrusion dispensed conductive adhesives. In: International electronics manufacturing technology symposium, pp 96–100Google Scholar
  127. 127.
  128. 128.
    Kataoka K, Kawamura S, Itoh T, Suga T, Ishikawa K, Honma H (2002) Low contact-force and compliant mems probe card utilizing fritting contact. In: Proceedings 15th International conference on micro electro mechanical systems (MEMS'02), Las Vegas, 20–24 Jan 2002, pp 364–367Google Scholar
  129. 129.
    Kataoka K, Itoh T, Inoue K, Suga T (2004) Multi-layer electro-plated micro-spring array for MEMS probe card. In: Proceedings 17th international conference on micro electro mechanical systems (MEMS'04), Maastricht, 25–29 Jan 2004, pp 733–736Google Scholar
  130. 130.
    Smith DL Alimonda AS (1996) A new flip-chip technology for high-density packaging. In: Proceedings 46th electronic components and technology conference, Orlando, 28–31 May 1996, pp 1069–1073Google Scholar
  131. 131.
    Chow EM, Chua C, Hantschel T, van Schuylenbergh K, Fork DK (2005) Solder-free pressure contact micro-springs in high-density flip-chip packages. In: Proceedings 55th electronic components and technology conference, Lake Buena Vista, FL, May 31–June 3 2005, pp 1119–1126Google Scholar
  132. 132.
    Itoh T, Kataoka K, Suga T (2006) Fabrication of microspring probes using conductive paste dispensing. In: Proceedings 19th international conference on micro electro mechanical systems (MEMS'06), Istanbul, 22–26 Jan 2006, pp 258–261Google Scholar
  133. 133.
    Itoh T, Suga T, Kataoka K (2007) Microstructure fabrication with conductive paste dispensing. In: Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, Bangkok, Thailand, Jan 2007, pp 1003–1006Google Scholar
  134. 134.
    Felba J, Friedel KP, Moscicki A (2000) Characterization and performance of electrically conductive adhesives for micro-wave applications. In: Proceedings of 4th international conference on adhesive joining and coating technology in electronics manufacturing, Helsinki, Finland, Jun 2000, pp 232–239Google Scholar
  135. 135.
    Liong S, Zhang Z, Wong CP (2001) High frequency measurement for isotropically conductive adhesives. In: Proceedings of 51th electronic components and technology conference, Orlando, FL, May 2001, pp 1236–1240Google Scholar
  136. 136.
    Hashimoto K, Akiyama Y, Otsuka K (2008) Transmission characteristics in GHz region at the conductive adhesive joints. In: Proceedings of electronic components and technology conference, pp 2067–2072Google Scholar
  137. 137.
    Jon B, Lai Z, Liu J (2000) IEEE Tran Adv Packag 23(4):743CrossRefGoogle Scholar
  138. 138.
    Constable JH, Kache T, Teichmann H, Muhle S, Gaynes MA (1999) Continuous electrical resistance monitoring, pull strength, and fatigue life of isotropically conductive adhesive joints. IEEE Trans Compon Packag Technol 22(2):191–199CrossRefGoogle Scholar
  139. 139.
    Gomatam R, Sancaktar E, Boismier D, Schue D, Malik I (2001) Behavior of electrically conductive adhesive filled adhesive joints under cyclic loading, part I: experimental approach. In: Proceedings of 4th international symposium and exhibition on advanced packaging materials, processes, properties and interfaces, Braselton, GA, Mar 2001, pp 6–12Google Scholar
  140. 140.
    Yamashita M, Suganuma K (2002) Degradation mechanism of conductive adhesive/Sn-Pb plating interface by heat exposure. J Electron Mater 31:551–556CrossRefGoogle Scholar
  141. 141.
    Xu S, Dillard DA, Dillard JG (2003) Environmental aging effects on the durability of electrically conductive adhesive joints. Int J Adhesion Adhesives 23:235–250CrossRefGoogle Scholar
  142. 142.
    Kuusiluoma S, Kiilunen J (2005) The reliability of isotropically con-ductive adhesive as solder replacement—a case study using LCP substrate. In: Proceedings of electronic packaging and technology conference (EPTC), pp 774–779Google Scholar
  143. 143.
    Duraj, Mach P (2006) Stability of electrical resistance of isotropic conductive adhesives within mechanical stress. In: International conference on applied electronics, Pilsen, Sept 2006Google Scholar
  144. 144.
    Jeahuck L, Cho CS, Morris JE (2007) Proceedings of international conference on electronic materials and packaging, 19–22 Nov 2007, pp 1–4Google Scholar
  145. 145.
    Wu HP, Wu XJ, Liu JF, Zhang GQ, Wang YW (2005) Development of a novel isotropic conductive adhesive filled with silver nanowires. J Composite Mater 40(21):1961–1968CrossRefGoogle Scholar
  146. 146.
    Leea HH, Choua KS (2005) Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives. Int J Adhesion Adhesives 25:437–441CrossRefGoogle Scholar
  147. 147.
    Ye L, Lai Z, Johan L, Tholen A (1999) Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives. IEEE Trans Electron Packag Manuf 22(4):299–302CrossRefGoogle Scholar
  148. 148.
    Fan L, Su B, Qu J, Wong CP (2004) Electrical and thermal conductivities of polymer composites containing nano-sized particles. In: Proceedings of electronic components and technology conference, Las Vegas, NV, pp 148–154Google Scholar
  149. 149.
    Mach P, Radev R, Pietrikova A. (2008) Electrically conductive adhesive filled with mixture of silver nano and microparticles. In: Proceedings of 2nd electronics system integration technology conference, 2008, pp 1141–1146Google Scholar
  150. 150.
    Jiang H, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18–13:2969–2973CrossRefGoogle Scholar
  151. 151.
    Kotthous S, Günther BH, Hang R, Schafer H (1997) Study of isotropically conductive bondings filled with aggregates of nano-sized Ag-particles. IEEE Trans Compon Packag Manuf Technol A 20(1):15–20CrossRefGoogle Scholar
  152. 152.
    Majima M, Koyama K, Tani Y, Toshioka H, Osoegawa M, Ka-shihara H, Inazawa S (2002) Development of conductive material using metal nano particles. SEI Tech Rev 54:25–27Google Scholar
  153. 153.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRefGoogle Scholar
  154. 154.
    Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616CrossRefGoogle Scholar
  155. 155.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical prop-erties. Phys Rev Lett 84(24):5552–5555CrossRefGoogle Scholar
  156. 156.
    Gao G, Cagin T, Goddard WA (1998) Energetics, structure, mechanical and vibrational properties of single walled carbon nano-tubes (SWNT). Nanotechnology 9:184–191CrossRefGoogle Scholar
  157. 157.
    Wu HP, Wu XJ, Ge MY, Zhang GQ, Wang YW, Ji-ang JZ (2007) Properties investigation on isotropical conductive adhesives filled with silver coated carbon nanotubes. Composites Sci Technol 67:1182–1186CrossRefGoogle Scholar
  158. 158.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites. Appl Phys Lett 76:2868CrossRefGoogle Scholar
  159. 159.
    Lin X, Lin F (2004) Improvement on the properties of silver-containing conductive adhesives by the addition of carbon nanotube. In: Proceedings of high density microsystem design and packaging, Shanghai, China, pp 382–384Google Scholar
  160. 160.
    Rutkofsky M, Banash M, Rajagopal R, Jian C (2005) Using a carbon nanotube additive to make electrically conductive commercial polymer composites. SAMPE Journal 41(2):54–55Google Scholar
  161. 161.
    Lin W, Xiu Y, Jiang H, Zhang R, Hildreth O, Moon K, Wong CP (2008) Self-assembled-monolayer-assisted chemical transfer of in-situ functionalized carbon nanotubes. J Am Chem Soc 130(30):9636–9637CrossRefGoogle Scholar
  162. 162.
    Lin W, Moon K, Wong CP (2009) A combined process of in-situ functionalization and microwave treatment to achieve ultra-small thermal expansion of aligned carbon nanotube/polymer nanocomposites: toward applications as thermal interface materials. Adv Mater 21(23):2421–2424CrossRefGoogle Scholar
  163. 163.
    Hatada K, Fujimoto H, Kawakita T, Ochi T (1988) A new LSI bonding technology: micron bump bonding assembly technology. In: Proceedings fifth IEEE/CHMT international electronic manufacturing technology symposium, Orlando, FL, pp 45–49Google Scholar
  164. 164.
    Hatada K, Fujimoto K, Ochi T, Ishida Y (1989) Applications of new assembly method ‘Micron Bump Bonding Method’. In: Proceedings of ‘89 IEEE/CHMT Japan international electronic manufacturing technology symposium, Nara, Japan, Apr 1989, pp 45–48Google Scholar
  165. 165.
    Ferrando F, Zeberli J-F, Clot P, Chenuz J-M (2000) Proceedings of 4th international conference on adhesive joining and coating technology in electronics manufacturing, Helsinki, Finland, Jun 2000, pp 205–211Google Scholar
  166. 166.
    Myung-Jin Yim, Jin-Sang Hwang, Woonseong Kwon, Kyung Woon Jang, Kyung-Wook Paik (2003) IEEE Trans Electron Packag Manuf 26(2):150–155Google Scholar
  167. 167.
    Chang-Kyu Chung, Kyung-Wook Paik (2007) Proceedings of 57th electronic components and technology conference, Reno, NV, pp 1831–838Google Scholar
  168. 168.
    Cheng-Li Chuang, Jong-Ning Aoh, Qing-An Liao, Shi-Jie Liao, Guo-Shing Huang (2008), Proceedings of international conference on electronic materials and packaging, Oct 2008, pp 208–211Google Scholar
  169. 169.
    Cheng-Li Chuang, Jong-Ning Aoh, Wei-How Chen (2009) Proceedings of international conference on electronic packaging technology & high density packaging, Aug 2009, pp 725–732Google Scholar
  170. 170.
    Chun-Chih Chuang, Su-Tsai Lu, Tao-Chih Chang, Kyoung-Lim Suk, Kyung-Wook Paik (2009) Proceedings of 4th international microsystems, packaging, assembly and circuits technology conference, Oct 2009, pp 56–59Google Scholar
  171. 171.
    Frye D, Guino R, Gupta S, Sano M, Sato K, Iida K (2010) Proceedings of electronic components and technology conference, pp 427–430Google Scholar
  172. 172.
    Kristiansen H, Bjorneklett A (1992) J Electron Manuf 2(1):7–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Henkel CorporationShanghaiChina
  2. 2.The Chinese University of Hong KongShatin, NTHong Kong, SAR
  3. 3.Georgia Institute of Technology School of Materials Science & EngineeringAtlantaUSA

Personalised recommendations