Advertisement

Experimental Tools for Reliability Analysis

  • Johan Liu
  • Olli Salmela
  • Jussi Särkkä
  • James E. Morris
  • Per-Erik Tegehall
  • Cristina Andersson
Chapter

Abstract

In this chapter, several basic types of experimental tools for different situations of reliability analysis are introduced, together with the working principles. After that, tools being used to do accelerate testing are also presented.

Optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), scanning acoustic microscopy (SAM), and moiré interferometry are used to measure the structure and geometry of the testing sample. Besides, low-cycle fatigue, shear, humidity, temperature, thermal shock, and thermal cycling tests could be done with the help of special types of machines.

Keywords

Solder Joint Shear Test Thermal Shock Fringe Pattern Solder Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

  1. 1.
    R. Tummala, Fundamentals of Microsystem Packaging, New York: McGraw-Hill, 2001.Google Scholar
  2. 2.
    D. Post, J. D. Wood, “Determination of Thermal Strains by Moiré Interferometry”, Experimental Mechanics, 29(3), 1989, 318–322.CrossRefGoogle Scholar
  3. 3.
    B. Han, “Recent Advancements of Moiré and Microscopic Moiré Interferometry for thermal Deformation Analyses of Microelectronics Devices”, Experimental Mechanics, 38(4), 1998, 278–288.Google Scholar
  4. 4.
    B. Han, D. Post, “Immersion Interferometer for Microscopic Moiré Interferometry”, Experimental Mechanics, 32(1), 1992, 38–41.CrossRefGoogle Scholar
  5. 5.
    J. W. Joo, K. W. Oh, S. M. Cho, B. Han, “Thermo-Mechanical and Flexural Behavior of WB-PBGA Package Using Moiré Interferometry”, Proceedings of 3rd International Symposium on Electronic Materials and Packaging, Cheju Island, Korea, 2001, 421–427.Google Scholar
  6. 6.
    J. S. Zhu, D. Q. Zou, F. L. Dai, S. Liu, “High Temperature Deformation of High Density Interconnects and Packages by Moiré Interferometry/FEM Hybrid Method”, Proceedings of 19th IEEE/CPMT International Electronics Manufacturing Technology Symposium, Austin, TX, USA, 1996, 75–83.Google Scholar
  7. 7.
    S. Liu, J. J. Wang, D. Q. Zou, X. Y. He, Z. F. Qian, “Resolving Displacement Field of Solder Ball in Flip-Chip Package by Both Phase Shifting Moiré Interferometry and FEM modelling”, Proceedings of 48th Electronic Components and Technology Conference (ECTC), Seattle, WA, USA, 1998, 1345–1353.Google Scholar
  8. 8.
    E. A. Stout, N. R. Sottos, A. F. Skipor, “Mechanical Characterization of Plastic Ball Grid Array Package Flexure Using Moiré Interferometry”, IEEE Transactions on Advanced Packaging, 32(4), 2000, 637–645.Google Scholar
  9. 9.
    X. Q. Shi, Z. P. Wang, “In-Situ Moiré Interferometry Technique and Its Applications to Microelectronic Packages”, Proceedings of 52nd Electronic Components and Technology Conference, San Diego, USA, 2002, 183–191.Google Scholar
  10. 10.
    W. S. Kwon, S. J. Ham, K. W. Paik, “Deformation Mechanism and Its Effect on Electrical Conductivity of ACF Flip Chip Package under Thermal Cycling Condition: An Experiment Study”, Microelectronics Reliability, 46(2–4), 2006, 589–599.CrossRefGoogle Scholar
  11. 11.
    T. K. Hwang, S. J. Ham, S. B. Lee, “A Study on the Thermal Deformation of ACF Assemblies Using Moiré Interferometry and FEM”, International Symposium on Electronic Materials & Packaging, Hong Kong, China, 2000, 358–363.Google Scholar
  12. 12.
    H. Ding, R. E. Powell, C. R. Hanna, I. Charles Ume, “Warpage Measurement Comparison Using Shadow Moiré and Projection Moiré Methods”, IEEE Transactions on Components and Packaging Technologies, 25(4), 2002, 714–721.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Johan Liu
    • 1
    • 2
  • Olli Salmela
    • 3
  • Jussi Särkkä
    • 4
  • James E. Morris
    • 5
  • Per-Erik Tegehall
    • 6
  • Cristina Andersson
    • 7
  1. 1.SMIT Center and Bionano Systems Laboratory Department of Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSweden
  2. 2.Key Laboratory of New Displays and System Integration SMIT Center and School of Mechatronics and Mechanical EngineeringShanghai UniversityShanghaiChina
  3. 3.Nokia Siemens NetworksEspooFinland
  4. 4.Nokia Siemens NetworksOuluFinland
  5. 5.Department of Electrical & Computer EngineeringPortland State UniversityPortlandUSA
  6. 6.Swerea IVFMölndalSweden
  7. 7.Department of Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSweden

Personalised recommendations