Efficient Model Reduction for the Control of Large-Scale Systems



When analyzing and controlling large-scale systems, it is extremely important to develop efficient modeling processes. The key dynamic elements must be identified and spurious dynamic elements eliminated. This allows the controls engineer to implement the optimal control strategy for the problem at hand. Model reduction techniques provide an extremely effective way to address this requirement.


Model Reduction Control System Design Model Reduction Technique Reduce Order System Pure Time Delay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis W. J. and Chiodi O. A. A method for the decoupling of equations by spectral decomposition. Lockheed Report LR 27479, Dec 1975Google Scholar
  2. 2.
    Socolinsky D. A. Wolff L. B., Neuheisel J. D., and Eveland C. K. Background information and user guide for mil-f-8785c, military specification, flying qualities of piloted airplanes. AFWAL-TR-81-3109, Sept 1981Google Scholar
  3. 3.
    Seidel R. C. Transfer-function-parameter estimation from frequency response data - a fortran program. NASA TM X-3286, Sept 1975Google Scholar
  4. 4.
    Colgren R. D. Methods for model reduction. AIAA-88-4144, pages 15–17, Aug 1998Google Scholar
  5. 5.
    Colgren R. D. Simultaneous Fit Equivalent Systems Program – User’s Guide. Lockheed California Company, Burbank, CA, 1985Google Scholar
  6. 6.
    Enns D. Model Reduction for Control System Design. PhD thesis, Department of Aeronautics and Astronautics Stanford University, 1984Google Scholar
  7. 7.
    Laub A. J., Heath M. T., Paige C. C., and Ward R. C. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Transactions on Automatic Control, Feb 1987Google Scholar
  8. 8.
    Kailath T. Linear Systems. Prentice-Hall, Upper Saddle River, 1980MATHGoogle Scholar
  9. 9.
    Safonov M. G. and Chiang R. Y. A schur method for balanced model reduction. IEEE Trans. on Automat. Contr., 34(7):729–733, july 1989Google Scholar
  10. 10.
    Colgren R. D. and Jonckheere E. A. Balanced model reduction for large aircraft models. MTNS91, June 1991Google Scholar
  11. 11.
    Anderson E. Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., and Sorensen D. Lapack User’s Guide, 1999Google Scholar
  12. 12.
    Balas G., Chiang R., Packard A., and Safonov M. Robust control toolbox 3 user’s guide. Revision for Version 3.3.3 (Release 2009a), Natick, MA, March 2009., March 2009Google Scholar
  13. 13.
    Safonov M. G., Chiang R. Y., and Limebeer D. J. N. Optimal hankel model reduction for nonminimal systems. IEEE Transactions on Automatic and Control, 35(4):496–502, April 1990MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Glover K. All optimal hankel norm approximation of linear multivariable systems, and their l infinity – error bounds. International Journal of Control, 39(6):1145–1193, 1984CrossRefMathSciNetGoogle Scholar
  15. 15.
    Jonckheere, E. A. and Silverman, L. M. A new set of invariants for linear systems – application to reduced order controller design. IEEE Transactions on Automatic Control, AC-28:953–964, 1983Google Scholar
  16. 16.
    Jonckheere, E. A. and Silverman, L. M. A new set of invariants for linear systems – application and approximation. In International Symposium on Theory, Networks and Systems, Santa Monica, CA, 1981Google Scholar
  17. 17.
    Colgren and R. D. Finite bandwidth model reduction applied to the advanced supersonic transport. COMCON3, Victoria, BC, Canada, Oct 1991Google Scholar
  18. 18.
    Dudginski R. J., and Colgren R. D. Time domain effects of model order reduction. In 3rd IEEE International Symposium on Intelligent Control, pp.24–26, Arlington, VA, Aug 1988Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Viking Aerospace LLCLawrenceUSA

Personalised recommendations