Advertisement

Distributed Control Methods for Structured Large-Scale Systems

  • Justin Rice
  • Paolo Massioni
  • Tamás Keviczky
  • Michel Verhaegen
Chapter

Abstract

The development of efficient and tractable distributed control design procedures for large-scale systems has been an active area of research in the past three decades [1, 2]. The growing number of applications where such solutions offer increased functionality, flexibility or efficiency has spawned a renewed interest in this topic. The main challenges lie in the computational cost and complexity of efficient controller design and implementation. For a thorough overview of distributed and decentralized control research, see [1], and the introduction to [2].

Keywords

Riccati Equation Optimal Controller Rational Symbol Pattern Matrix Sign Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. R. Sandell Jr., P. Varaiya, M. Athans, and M. G. Safonov. Survey of decentralized control methods for large scale systems. IEEE Trans. Autom. Contr., 23:108–129, 1978MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. D’Andrea and G. E. Dullerud. Distributed control design for spatially interconnected systems. IEEE Trans. Autom. Contr., 48:1478–1495, 2003CrossRefMathSciNetGoogle Scholar
  3. 3.
    Roger W. Brockett and Jacques L. Willems. Discretized partial differential equations: Examples of control systems defined on modules. Automatica, 10:507–515, 1974MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Morten Hovd, Richard D. Braatz, and Sigurd Skogestad. SVD controllers for H 2-, H - and μ-optimal control. Automatica, 33:433–439, 1997MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jeremy G. VanAntwerp, Andrew P. Featherstone, and Richard D. Braatz. Robust cross-directional control of large scale sheet and film processes. J. Process Contr., 11:149–177, 2001Google Scholar
  6. 6.
    M. R. Jovanović and B. Bamieh. On the ill-posedness of certain vehicular platoon control problems. IEEE Trans. Autom. Contr., 50(9):1307–1321, September 2005CrossRefGoogle Scholar
  7. 7.
    B. Bamieh, F. Paganini, and M. A. Dahleh. Distributed control of spatially invariant systems. IEEE Trans. Autom. Contr., 47(7):1091–1107, 2002CrossRefMathSciNetGoogle Scholar
  8. 8.
    E. W. Kamen. Multidimensional systems Theory: Stabilization of Linear Spatially-Distributed Continuous-Time and Discrete-Time Systems, pages 101–146 Norwell, MA: Kluwer, 1985Google Scholar
  9. 9.
    B. Bamieh, F. Paganini, and M. A. Dahleh. Distributed control of spatially invariant systems. IEEE Trans. Autom. Contr., 47:1091–1106, 2002CrossRefMathSciNetGoogle Scholar
  10. 10.
    G. A. de Castro and F. Paganini. Convex synthesis of localized controllers for spatially invariant systems. Automatica, 38:445–456, 2002MATHCrossRefGoogle Scholar
  11. 11.
    Rufus Fraanje. Private communicationGoogle Scholar
  12. 12.
    A. Böttcher and B. Silberman. Introduction to Large Truncated Toeplitz Matrices. Springer, Berlin, 1991Google Scholar
  13. 13.
    I. Gohberg, S. Goldberg, and M. Kaashoek. Classes of Linear Operators Vol. II. Birkhauser, Basel, 1993Google Scholar
  14. 14.
    R. Curtain, O. Iftime, and H. Zwart. System theoretic properties of platoon-type systems. Proceedings of the IEEE Conference on Decision and Control, 2008Google Scholar
  15. 15.
    S. Boyd and V. Balakrishnan. A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L norm. Syst. Contr. Lett., 15:1–7, 1990MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. K. Rice and M. Verhaegen. Distributed control: A sequentially semi-separable approach for heterogeneous linear systems. IEEE Trans. Autom. Contr., 54:1270–1283, 2009CrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Rice and M. Verhaegen. Distributed control of spatially invariant systems using fast iterative solutions to rationally parametric matrix problems. Proceedings of IEEE Conference Decision and Control, 2009Google Scholar
  18. 18.
    J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Contr., 32:677–687, 1980MATHCrossRefGoogle Scholar
  19. 19.
    C. S. Kenney and A. J. Laub. The matrix sign function. IEEE Trans. Autom. Contr., 40: 1330–1348, 1995MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Grasedyck, W. Hackbusch, and B. N. Khoromskij. Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing, 70:121–165, 2003CrossRefMathSciNetGoogle Scholar
  21. 21.
    C. Kenney, A. J. Laub, and E.A. Jonckheere. Positive and negative solutions of dual Riccati equations by matrix sign function iteration. Syst. Contr. Lett., 13:109–116, 1989MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    J. K. Rice and M. Verhaegen. Distributed control: A sequentially semi-separable approach. Proceedings of IEEE Conference Decision and Control, 2008Google Scholar
  23. 23.
    T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice-Hall, Englewood Cliffs, 2000Google Scholar
  24. 24.
    K. Zhou, K. Glover, and J. C. Doyle. Robust and Optimal Control. Prentice-Hall, Englewood Cliffs, 1996MATHGoogle Scholar
  25. 25.
    P. Massioni and M. Verhaegen. Distributed control for identical dynamically coupled systems: a decomposition approach. IEEE Trans. Autom. Contr., 54(1):124–135, January 2009CrossRefMathSciNetGoogle Scholar
  26. 26.
    C. Scherer and S. Weiland. Linear matrix inequalities in control. Online, http://www.dcsc.tudelft.nl/˜cscherer/2416/lmi05.pdf,2005, Lecture notes
  27. 27.
    C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Contr., 42(7):896–911, 1997MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    G.A. de Castro and F. Paganini. Convex synthesis of localized controllers for spatially invariant systems. Automatica, 38(3):445–456, 2002MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    A. Rantzer. On the Kalman–Yakubovich–Popov lemma. Syst. Contr. Lett., 28(1):7–10, 1996MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    F. Borrelli and T. Keviczky. Distributed LQR design for identical dynamically decoupled systems. IEEE Trans. Autom. Contr., 53(8):1901–1912, August 2008CrossRefMathSciNetGoogle Scholar
  31. 31.
    M. K. Sundareshan and R. M. Elbanna. Qualitative analysis and decentralized controller synthesis for a class of large-scale systems with symmetrically interconnected subsystems. Automatica, 27(2):383–388, 1991MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    B. D. O. Andreson and J. B. Moore. Optimal Control: Linear Quadratic Methods. Prentice-Hall, Englewood Cliffs, 1990Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Justin Rice
    • 1
  • Paolo Massioni
    • 1
  • Tamás Keviczky
    • 1
  • Michel Verhaegen
    • 1
  1. 1.Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands

Personalised recommendations