Skip to main content

Modeling of Moisture Diffusion and Moisture-Induced Stresses in Semiconductor and MEMS Packages

  • Chapter
  • First Online:
Moisture Sensitivity of Plastic Packages of IC Devices

Abstract

This chapter describes recent progresses in modeling of moisture diffusion and moisture-induced stresses in semiconductor and MEMS packages. It addresses both fundamental and practical aspects including (1) the theoretical background of moisture diffusion and hygroscopic swelling, (2) modeling schemes to solve moisture diffusion and combined hygro-thermo-mechanical stresses, and (3) validation of those modeling schemes. Three specific modeling schemes are presented: (v1) thermal–moisture analogies that enable a heat transfer module in commercial finite element analysis software to solve moisture diffusion equations, (2) an effective-volume scheme that can effectively handle moisture diffusion into and out of a cavity surrounded by polymeric materials, and (3) hygro-thermo-mechanical stress analysis scheme that combines hygroscopic swelling-induced stresses with conventional thermo-mechanical stresses through a sequential procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Analytical solutions for 1-D bi-material problems, albeit very limited, can be found in [6].

  2. 2.

    Among the commercial FEA packages, only ABAQUS provides the general mass diffusion analysis capabilities.

References

  1. Yoon, S., Jang, C., Han, B., “Nonlinear stress modeling scheme to analyze semiconductor packages subjected to combined thermal and hygroscopic loading”, Journal of Electronic Packaging 130, 024502 (5 pages), 2008.

    Article  Google Scholar 

  2. Lee, M.C., Peppas, N.A., “Water transport in graphite/epoxy composites”, Journal of Applied Polymer Science, 47, 1349–1359, 1993.

    Article  Google Scholar 

  3. Kitano, M., Kawai, S., Nishimura, M., Nishi, K., “A study of package cracking during the reflow soldering process”, Transactions of the Japan Society of Mechanical Engineering A, 55, 356–363, 1989.

    Article  Google Scholar 

  4. Jang, C., Park, S., Yoon, S., Han, B., “Advanced thermal-moisture analogy scheme for anisothermal moisture diffusion problem”, J Electron Packaging, 130, 011004 (8 pages), 2008.

    Google Scholar 

  5. Jang, C., Goswami, A., Han, B., “Hermeticity evaluation of polymer-sealed MEMS packages by gas diffusion analysis”, J Microelectromech S, 18, 577–587, 2009.

    Google Scholar 

  6. Jost, W., Diffusion in Solids, Liquids, Gases, 3rd edition. New York, NY: Academic, 1960.

    Google Scholar 

  7. JESD22-A120A, “Test method for the measurement of moisture diffusivity and water solubility in organic materials used in electronic devices”, JEDEC Standards 2001.

    Google Scholar 

  8. Tay, A.A.O., Lin, T., “Moisture diffusion and heat transfer in plastic IC packages”, IEEE Transactions on Components and Packaging Technologies, Part A, 19, 186–193, 1996.

    Article  Google Scholar 

  9. Galloway, J.E., Miles, B.M., “Moisture absorption and desorption predictions for plastic ball grid array packages”, IEEE Transactions on Components and Packaging Technologies, Part A, 20, 274–279, 1997.

    Article  Google Scholar 

  10. Ardebili, H., Wong, E.H., Pecht, M., “Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging”, IEEE Transactions on Components and Packaging Technologies, Part A, 26, 206–214, 2003.

    Article  Google Scholar 

  11. Wong, E.H., Rajoo, R., “Moisture absorption and diffusion characterization of packaging materials – advanced treatment”, Microelectronics Reliability, 43, 2087–96, 2003.

    Google Scholar 

  12. Stellrecht, E., Han, B., Pecht, M.G., “Characterization of hygroscopic swelling behavior of mold compounds and plastic packages”, IEEE Transactions on Components and Packaging Technologies, 27, 499–506, 2004.

    Article  Google Scholar 

  13. Wong, E.H., Koh, S.W., Lee, K.H., Lim, K-M., Lim, T.B., Mai, Y.-M., “Advances in vapor pressure modeling for electronic packaging”, IEEE Transactions on Advanced Packaging, 29, 751–759, 2006.

    Article  Google Scholar 

  14. Tee, T.Y., Kho, C.L., Yap, D., Toh, C., Baraton, X., Zhong, Z., “Reliability assessment and hygroswelling modeling of FCBGA with no-flow underfill”, Micronelectronics Reliability, 43, 741–749, 2003.

    Google Scholar 

  15. Shi, Y., Tay, A.A.O., Wong, E.H., Ranjan, R., “An effective method of characterizing moisture desorption of polymeric materials,” Proceedings of 2002 Electronics Packaging Technology Conference, pp. 70–75, 2002.

    Google Scholar 

  16. Jang, C., Han, B., Yoon, S., “Moisture diffusion characteristics of epoxy molding compounds over solder reflow process temperature”, IEEE Transactions on Components and Packaging Technologies, submitted, 2009.

    Google Scholar 

  17. Huang, W., Wang, X., Sheng, M., Xu, L., Stubhan, F., Luo, L. et al., “Low temperature PECVD SiNx films applied in OLED packaging”, Materials Science and Engineering: B, 98, 248–254, 2003.

    Article  Google Scholar 

  18. http://www.mocon.com

  19. Gebhart, B., Heat Conduction and Mass Diffusion. New York, NY: McGraw Hill, 1993.

    Google Scholar 

  20. Jang, C., Han, B., “Analytical solutions of gas transport problems in inorganic/organic hybrid barrier structures”, Journal of Applied Physics, 105, 093532, 2009.

    Article  Google Scholar 

  21. Sekelik, D.J., Stepanov, E.V., Nazarenko, S., Schiraldi, D., Hiltner, A., Baer, E., “Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephthalate)”, Journal of Polymer Science, Part B: Polymer Physics, 37, 847–857, 1999.

    Article  Google Scholar 

  22. Hu, Y.S., Schiraldi, D.A., Hiltner, A., Baer, E., “Structural model for oxygen permeability of a liquid crystalline polymer”, Macromolecules, 36, 3606–3615, 2003.

    Article  Google Scholar 

  23. Lin, J., Shenogin, S., Nazarenko, S., “Oxygen solubility and specific volume of rigid amorphous fraction in semicrystalline poly(ethylene terephthalate)”, Polymer, 43, 4733–4743, 2002.

    Article  Google Scholar 

  24. Berry, B.S., Pritchet, W.C., “Bending cantilever method for the study of moisture swelling in polymers”, IBM Journal of Research and Development, 28, 1984.

    Google Scholar 

  25. Xiao, G.Z., Shanahan, M.E.R., “Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing”, Polymer, 39, 3253–3260, 1998.

    Article  Google Scholar 

  26. Buchhold, R., Nakladal, A., Gerlach, V., Sahre, K., Eichhorn, K-J., Müller, M., “Reduction of mechanical stress in micromachined components caused by humidity-induced volume expansion of polymer layers”, Microsystem Technologies, 5, 3–12, 1998.

    Article  Google Scholar 

  27. Post, D., Han, B., Ifju, P., High Sensitivity Moiré. New York, NY: Springer, 1994.

    Book  Google Scholar 

  28. Sutton, M.A., McNeill, S.R., Helm, D., Chao, Y.J., “Advances in two-dimensional and three-dimensional computer vision, photomechanics”, Topics in Applied Physics, 77, 323–372, 2000.

    Article  Google Scholar 

  29. Stellrecht, E., Han, B., Pecht, M., “Measurement of the hygroscopic swelling coefficient in mold compounds using moiré interferometry”, Experimental Techniques, 27, 40–44, 2003.

    Article  Google Scholar 

  30. Jang, C., Yoon, S., Han, B., “Measurement of hygroscopic swelling coefficient of thin film polymers used in semiconductor packaging”, IEEE Transactions on Components and Packaging Technologies, accepted for publication, 2009.

    Google Scholar 

  31. Yoon, S., Han, B., Wang, Z., “On moisture diffusion modeling using thermal diffusion analogy”, Journal of Electronic Packaging, 129, 421–426, 2007.

    Article  Google Scholar 

  32. Mikhailov, M.D., Ozisik, M.N., Unified Analysis and Solutions of Heat and Mass Diffusion. New York, NY: Wiley, 1984.

    Google Scholar 

  33. Wong, E.H., Koh, S.W., Lee, K.H., Rajoo, R., “Comprehensive treatment of moisture induced failure – recent advances”, IEEE Transactions on Electronics Packaging Manufacturing , 25, 223–230, 2002.

    Article  Google Scholar 

  34. Wong, E.H., Rajoo, R., Koh, S.W., Lim, T.B., “The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging”, Journal of Electronic Packaging, 124, 122–126, 2002.

    Article  Google Scholar 

  35. Vaddadi, P., Nakamura, T., Singh, R.P., “Inverse analysis for transient moisture diffusion through fiber-reinforced composites”, Acta Materialia, 51, 177–193, 2003.

    Article  Google Scholar 

  36. Tee, T.Y., Zhong, Z., “Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interfacial fracture mechanics analysis”, Microelectronics Reliability, 44, 105–114, 2004.

    Article  Google Scholar 

  37. Wu, B., Yang, W., Jia, C., “A three-dimensional numerical simulation of transient heat and mass transfer inside a single rice kernel during the drying process”, Biosystems Engineering, 87, 191–200, 2004.

    Article  Google Scholar 

  38. Jang, C., Cho, Y-R., Han, B., “Ideal laminate theory for water transport analysis of metal-coated polymer films”, Applied Physics Letters, 93, 133307, 2008.

    Article  Google Scholar 

  39. Hodge, R.M., Edward, G.H., Simon, G.P., “Water absorption and state of water in semicrystalline poly(vinyl alcohol) films”, Polymer,, 37, 1371–1376, 1996.

    Article  Google Scholar 

  40. Soles, C.L., Chang, F.T., Bolan, B.A., Hristov, H.A.D., Gidley, D.W., Yee, A.F., “Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins”, Journal of Polymer Science, Part B: Polymer Physics, 36, 3035–3048, 1998.

    Article  Google Scholar 

  41. Jang, C., Park, S., Yoon, S.,Han, B. “Advanced thermal-moisture analogy scheme for anisothermal moisture diffusion problem”, Journal of Electronic Packaging, 130, 011004, 2008.

    Article  Google Scholar 

  42. Chen, X., Zhao, S., Zhai, L., “Moisture absorption and diffusion characterization of molding compound”, Journal of Electronic Packaging, 127, 460–465, 2005.

    Article  Google Scholar 

  43. Uschitsky, M., Suhir, E., “Moisture diffusion in epoxy molding compounds filled with particles”, Journal of Electronic Packaging, 123, 47–51, 2001.

    Article  Google Scholar 

  44. Vogels, R.C.J., Huang, M., Yang, D.G., van Driel, W.D., Zhang, G.Q., “Fast characterization for moisture properties of moulding compounds: influence of temperature and humidity,” Proceedings of 6th International Conference on Electronic Packaging Technology, pp. 185–190, 2005.

    Google Scholar 

  45. Wong, E.H., Chan, K.C., Tee, T.Y., Rajoo, R., “Comprehensive treatment of moisture induced failure in IC packaging,” Proceedings of 3rd Electronics Manufacturing Technology Conference, Japan, pp. 176–181, 1999.

    Google Scholar 

  46. Chang, K.C., Yeh, M.K., Chiang, K.N., “Hygrothermal stress analysis of a plastic ball grid array package during solder reflow”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 218, 957–970, 2004.

    Article  Google Scholar 

  47. Tay, A.A.O., Lin, T.Y., “Moisture-induced interfacial delamination growth in plastic IC packages during solder reflow,” Proceedings of 38th Electronic Components and Technology Conference, Seattle, WA, USA, pp. 371–378, 1998.

    Google Scholar 

  48. Wong, E.H., Koh, S.W., Lee, K.H., Rajoo, R., “Advanced moisture diffusion modeling and characterization for electronic packaging,” Proceedings of 52nd Electronic Components and Technology Conference, San Diego, CA, USA, pp. 1297–1303, 2002.

    Google Scholar 

  49. Wolff, G., “Polymer matrix composites: moisture effects and dimensional stability”, edited by Lee, S.M., International Encyclopedia of Composites, Vol. 4, New York, NY: VCH, pp. 279–323, 1991.

    Google Scholar 

  50. Sarvar, F., Hutt, D.A., Whalley, D.C., “Application of adhesives in MEMS and MOEMS assembly: a review,” Proceedings of IEEE Polytronic 2002 Conference, pp. 22–28, 2002.

    Google Scholar 

  51. Niklaus, F., Stemme, G., Lu, J.Q., Gutmann, R.J., “Adhesive wafer bonding”, Journal of Applied Physics, 99, 031101, 2006.

    Article  Google Scholar 

  52. Jourdain, A., De Moor, P., Pamidighantam, S., Tilmans, H.A.C., “Investigation of the hermeticity of BCB-sealed cavities for housing (RF-) MEMS devices,” Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, pp. 677–680, 2002.

    Google Scholar 

  53. Noh, H., Moon, K.S., Cannon, A., Hesketh, P.J., Wong, C.P., “Wafer bonding using microwave heating of parylene for MEMS packaging,” Proceedings of IEEE Electronic Components and Technology Conference, pp. 924–930, 2004.

    Google Scholar 

  54. Goswami, A., “Quantitative hermeticity measurement of micro- to nano-liter scale cavities,” PhD Dissertation, College Park, MD: University of Maryland at College Park, 2008.

    Google Scholar 

  55. Jang, C., Goswami, A., Han, B., Ham, S., “In-situ measurement of gas diffusion properties of polymeric seals used in MEMS packages by optical gas leak test”, Journal of Micro/Nanolithography, MEMS, and MOEMS (JM3), 8, 043025, 2009.

    Google Scholar 

  56. Wang, Y., Han, B., Kim, D.W., Bar-Cohen, A., Joseph, P., “Integrated measurement technique for curing process-dependent mechanical properties of polymeric materials using fiber bragg grating”, Experimental Mechanics, 48, 107–117, 2008.

    Article  Google Scholar 

  57. Riande, E., Diaz-Calleja, R., Prolongo, M., Masegosa, R., Polymer Viscoelasticity: Stress and Strain in Practice. New York, NY: Marcel Dekker, 1999.

    Google Scholar 

  58. ANSYS release 10 documentation 2005.

    Google Scholar 

  59. Yoon, S., Han, B., Cho, S., Jang, C., “Experimental verification of non-linear finite element analysis for combined hygroscopic and thermo-mechanical stresses,” Proceedings of 2005 SEM Annual Conference, Portland, OR, USA, 2005.

    Google Scholar 

  60. Williams, M.L., Landel, R.F., Ferry, J.D., “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids”, Journal of the American Chemical Society, 77, 3701–3707, 1955.

    Article  Google Scholar 

  61. Han, B., Post, D., Ifju, P., “Moiré interferometry for engineering mechanics: current practices and future developments”, Journal of Strain Analysis for Engineering Design, 36, 101–117, 2002.

    Article  Google Scholar 

  62. ABAQUS, Abaqus 6.4 Analysis User's Manual, Section 6.8. Providence, RI: ABAQUS Inc.

    Google Scholar 

Download references

Acknowledgments

This work was supported partly by the Center for Advanced Life Cycle Engineering (CALCE) of the University of Maryland and the Integrated Electronics Engineering Center (IEEC) of the State University of New York at Binghamton. Their support is acknowledged gratefully. The authors would also like to thank Prof. Seungbae Park in the State University of New York at Binghamton, Dr. Samson Yoon and Dr. Seungmin Cho in Samsung Techwin Co., Ltd., and Dr. Arindam Goswami in Apple Inc. for their friendly supports and technical contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jang .

Editor information

Editors and Affiliations

Appendix

Appendix

8.1.1 A.1 FDM Schemes for Mass Diffusion Equations

8.1.1.1 A.1.1 Anisothermal 1-D Problem

For a 1-D mass diffusion problem, the diffusion equation of equation (8.9) can be reduced to

$$\phi \frac{{\partial S}}{{\partial t}} + S\frac{{\partial \phi }}{{\partial t}} = \frac{\partial }{{\partial x}}\left[ {D\frac{{\partial \left( {S\phi } \right)}}{{\partial x}}} \right].$$
((8.54))

The explicit finite difference form of equation (8.54) can be expressed as

$$\begin{array}{l} \displaystyle S_x^t \frac{{\phi _x^{t + \Delta t} - \phi _x^t }}{{\Delta t}} + \phi _x^t \frac{{S_x^{t + \Delta t} - S_x^t }}{{\Delta t}} \\ \displaystyle\quad = \frac{{\left( {\frac{{D_{x + \Delta x}^t + D_x^t }}{2}} \right)\frac{{S_{x + \Delta x}^t \phi _{x + \Delta x}^t - S_x^t \phi _x^t }}{{\Delta x}} - \left( {\frac{{D_x^t + D_{x - \Delta x}^t }}{2}} \right)\frac{{S_x^t \phi _x^t - S_{x - \Delta x}^t \phi _{x - \Delta x}^t }}{{\Delta x}}}}{{\Delta x}} \\ \displaystyle\quad = \frac{{\left( {D_x^t + D_{x - \Delta x}^t } \right)S_{x - \Delta x}^t \phi _{x - \Delta x}^t - \left( {D_{x + \Delta x}^t + 2D_x^t + D_{x - \Delta x}^t } \right)S_x^t \phi _x^t + \left( {D_{x + \Delta x}^t + D_x^t } \right)S_{x + \Delta x}^t \phi _{x + \Delta x}^t }}{{2\left( {\Delta x} \right)^2 }} \\ \end{array}.$$
((8.55))

The superscript t and the subscript x denote the time and spatial dependency of φ, respectively. The values of S t, \(S^{t + \Delta t}\), and D t can be calculated directly from equation (8.4). For an isothermal problem, equation (8.55) is reduced to

$$\frac{{\phi _x^{t + \Delta t} - \phi _x^t }}{{\Delta t}} = \frac{{D\phi _{x - \Delta x}^t - 2D\phi _x^t + D\phi _{x + \Delta x}^t }}{{\left( {\Delta x} \right)^2 }}.$$
((8.56))

For multi-material systems, the normalized concentration at the interface must satisfy a certain condition to ensure a continuous mass flux. Assuming that the materials I and II are located on the left and right sides of the interface, respectively, the continuity requires

$$D_{\textrm{I}} S_{\textrm{I}} \left. {\frac{{\partial \phi }}{{\partial x}}} \right|_{x_i ^ - } = D_{{\textrm{II}}} S_{{\textrm{II}}} \left. {\frac{{\partial \phi }}{{\partial x}}} \right|_{x_i ^ + } $$
((8.57))

where \(x_i-\) and \(x_i+\) denote the left side and right side at the interface x i . The discretization of equation (8.57) yields

$$D_{\textrm{I}}^t S_{\textrm{I}}^t \frac{{\phi _{x_i }^t - \phi _{x_i - \Delta x}^t }}{{\Delta x}} = D_{{\textrm{II}}}^t S_{{\textrm{II}}}^t \frac{{\phi _{x_i + \Delta x}^t - \phi _{x_i }^t }}{{\Delta x}}.$$
((8.58))

Strictly speaking, equation (8.57) is valid for an infinitesimal interface volume whose moisture content is negligible. Once the analysis domain is discretized, however, the interface volume takes finite values and retains a certain amount of moisture. A more rigorous formulation for the interface can thus be derived by considering the moisture accumulation at the interface volume (interface length, dx, after normalized by the area in the 1-D case). It is mathematically expressed as

$$S_{\textrm{I}} \frac{{\partial \phi }}{{\partial t}}\left( {\frac{{dx}}{2}} \right) + S_{{\textrm{II}}} \frac{{\partial \phi }}{{\partial t}}\left( {\frac{{dx}}{2}} \right) = - J^ + + J^ - = D_{{\textrm{II}}} S_{{\textrm{II}}} \left. {\frac{{\partial \phi }}{{\partial x}}} \right|_{x_i + } - D_{\textrm{I}} S_{\textrm{I}} \left. {\frac{{\partial \phi }}{{\partial x}}} \right|_{x_i - }.$$
((8.59))

The corresponding finite difference form is obtained as

$$\frac{{\Delta x}}{2}\left( {S_{\textrm{I}} + S_{{\textrm{II}}} } \right)\frac{{\phi _{x_i }^{t + \Delta t} - \phi _{x_i }^t }}{{\Delta t}} = D_{{\textrm{II}}}^t S_{{\textrm{II}}}^t \frac{{\phi _{x_i + \Delta x}^t - \phi _{x_i }^t }}{{\Delta t}} - D_{\textrm{I}}^t S_{\textrm{I}}^t \frac{{\phi _{x_i }^t - \phi _{x_i - \Delta x}^t }}{{\Delta x}}$$
((8.60))

When node spacing is sufficiently small, equations (8.58) and (8.60) yield practically the same result.

It would be worth noting that the implicit scheme can be obtained simply by replacing all superscript t in the right-hand sides of equations (8.55) and (8.60) with t + Δt.

8.1.1.2 A.1.2 Isothermal Axisymmetric Problem

The explicit finite difference form of equation (8.38) can be expressed as

$$\frac{{\phi _r^{t + \Delta t} - \phi _r^t }}{{\Delta t}} = \frac{{D\left(\phi _{r + \Delta r}^t - 2\phi _r^t + \phi _{r - \Delta r}^t \right)}}{{\left( {\Delta r} \right)^2 }} + \frac{D}{r}\frac{{\phi _{r + \Delta r}^t - \phi _{r - \Delta r}^t }}{{2\left( {\Delta r} \right)}}.$$
((8.61))

Mass continuity at the volume about the center node \((r = 0 \sim \Delta r/2)\) yields

$$S\frac{{\partial \phi }}{{\partial t}}dV = - JA = DSA\frac{{\partial \phi }}{{\partial r}}.$$
((8.62))

In the finite difference form,

$$\frac{{\phi _0^{t + \Delta t} - \phi _0^t }}{{\Delta t}} \cdot \left( {\frac{{\Delta r}}{2}} \right) = D\frac{{\phi _{\Delta r}^{t} - \phi _{0}^{t} }}{{\Delta r}}.$$
((8.63))

Since the area is not constant along the r axis, the mass continuity at the interface (r = r i ) depicted in equation (8.59) should be modified as

$$S_{\textrm{I}} \frac{{\partial \phi }}{{\partial t}}{\textrm{d}}V^ - + S_{{\textrm{II}}} \frac{{\partial \phi }}{{\partial t}}{\textrm{d}}V^ + = - J^ + A^ + + J^ - A^ - = D_{{\textrm{II}}} S_{{\textrm{II}}} A^ + \left. {\frac{{\partial \phi }}{{\partial r}}} \right|_{r_{\textrm{i}} + } - D_{\textrm{I}} S_{\textrm{I}} A^ - \left. {\frac{{\partial \phi }}{{\partial r}}} \right|_{r_{\textrm{i}} - }.$$
((8.64))

The finite difference form is then obtained as

$$\begin{array}{l} S_{\textrm{I}} \frac{{\phi _{r_{\textit{i}} }^{t + \Delta t} - \phi _{r_{\textit{i}} }^t }}{{\Delta t}} \cdot \pi \left[ {r_{\textit{i}} ^2 - \left( {r_{\textit{i}} - \frac{{\Delta r}}{2}} \right)^2 } \right] + S_{{\textrm{II}}} \frac{{\phi _{r_{\textit{i}} }^{t + \Delta t} - \phi _{r_{\textit{i}} }^t }}{{\Delta t}} \cdot \pi \left[ {\left( {r_{\textit{i}} + \frac{{\Delta r}}{2}} \right)^2 - r_{\textit{i}} ^2 } \right] \\ \quad = D_{{\textrm{II}}} S_{{\textrm{II}}} \cdot 2\pi \left( {r_{\textit{i}} + \frac{{\Delta r}}{2}} \right) \cdot \frac{{\phi _{r_{\textit{i}} + \Delta r}^{t} - \phi _{r_{\textit{i}} }^{t} }}{{\Delta r}} - D_{\textrm{I}} S_{\textrm{I}} \cdot 2\pi \left( {r_{\textit{i}} - \frac{{\Delta r}}{2}} \right) \cdot \frac{{\phi _{r_{\textit{i}} }^{t} - \phi _{r_{\textit{i}} - \Delta r}^{t} }}{{\Delta r}} \\ \end{array}.$$
((8.65))

Re-arranging equation (8.65) yields

$$\begin{array}{l} \frac{{\phi _{r_{\textrm{i}} }^{t + \Delta t} - \phi _{r_{\textrm{i}} }^t }}{{\Delta t}}\left[ {S_{\textrm{I}} \left( {r_{\textrm{i}} \Delta r - \frac{{\Delta r^2 }}{4}} \right) + S_{{\textrm{II}}} \left( {r_{\textrm{i}} \Delta r + \frac{{\Delta r^2 }}{4}} \right)} \right] \\ \quad\;\;\; = D_{{\textrm{II}}} S_{{\textrm{II}}} \left( {2r_{\textrm{i}} + \Delta r} \right)\frac{{\phi _{r_{\textrm{i}} + \Delta r}^{t}} - \phi_{r_{\textrm{i}}}^{t}}{{\Delta r}} - D_{\textrm{I}} S_{\textrm{I}} \left( {2r_{\textrm{i}} - \Delta r} \right)\frac{{\phi_{r_{\textrm{i}}}^{t} - \phi_{r_{\textrm{i}} - \Delta r}^{t} }}{{\Delta r}} \\ \end{array}.$$
((8.66))

8.1.2 A.2 ANSYS Input Templates for the Advance Analogy

8.1.2.1 A.2.1 Transient Case \(\left( {\nabla T = 0{\textrm{ but }}\dot T \ne 0} \right)\)

The macro listed below is the portion for the setup of material properties and solution steps included in the modeling program of the case study. Since the system is spatially isothermal, the properties of each material are homogenous. Therefore, they can be defined as constants at each solution step:! Defining parameters M1=19.74 ! M of material I M2=6.58 ! M of material II R_gas=8.3145 ! Gas constant D01=5e-3 ! D0 of material I S01=6e-10 ! S0 of material I D02=4e-3 ! D0 of material II S02=2e-10e ! S0 of material II Ed1=-5e4e ! D1 = D01 * exp(Ed1/R_gas/T) Es1=4e4 ! S1 = S01 * exp(Es1/R_gas/T) Ed2=-5e4 ! D2 = D02 * exp(Ed2/R_gas/T) Es2=4e4 ! S2 = S02 * exp(Es2/R_gas/T) ! RH = H0*exp(Eh/R_gas/T) for fixed partial vapor pressure (P at 25C/100%RH) ! H0 = S0*Pv/M in Eq. (16), where Pv = 3207 Pa in this case H0=9.742e-8 ! Note: In this program Evp was set 4e4 for consistency with Es ! Its actual value = 4.15e4 Eh=Es1 ! Will be used to calculate phi_BC(T) for fixed Pv T0=298 ! Initial temperature dt=9 ! Time step ! /prep7 et,1,55 ! 2D thermal element c,1,M1 ! c = M ("Modified" solubility) c,2,M2 dens,1,1 ! Densities = 1 dens,2,1 !............................................................ ! Solid modeling, meshing, and grouping for IC/BC setup !............................................................ /sol antype,4 ! Initial condition setup. Node components pre-defined ! Phi of exterior surface nodes -> RH of environment ic,exterior,temp,H0*exp(Eh/T0) ! Phi of interior nodes -> zero (initially fully dried) ic,interior,temp,0 ! *do,ii,1,400 time,ii*dt ! System temperature at the current solution step T1=T0+(1/60)*ii*dt ! Calculation of boundary RH at the current solution step d,exterior,temp,H0*exp(Eh/R_gas/T1) ! Update of conductivity of the analogy kxx,1,D01*exp(Ed1/R_gas/T1)*M1 ! k = DM kxx,2,D02*exp(Ed2/R_gas/T1)*M2 nsub,1,1,1 solv *enddo

8.1.2.2 A.2.2 Anisothermal Case \(\left( {\nabla T \ne 0{\textrm{ and }}\dot T \ne 0} \right)\)

A truly anisothermal loading gives rise to much more complexity in the analogy model. An example of modeling and solving process is illustrated in Fig. 8.18. The key feature is re-assignment of material properties to each element after sorting all elements by materials and temperatures. In ANSYS, the element table feature [57] is useful when this process is to be implemented: ! key part for material property definition and update ! All parameters used in this macro are identical to those in A.1 /prep7 et,1,55 ! 2D thermal element ! Pre-definition of material properties as a function of temperature ! In this program, they are defined from 1C to 100C with one degree step *do,ii,1,100 dens,ii,1 c,ii,M1 kxx,ii,D01*exp(Ed1/(273+ii))*M1 *enddo *do,ii,101,200 dens,ii,1 c,ii,M2 kxx,ii,D02*exp(Ed2/(173+ii))*M2 *enddo !........................................................... ! Solid modeling, meshing, and grouping for IC/BC setup !........................................................... ! Total element count = 8000 (4000 for each material) ! Node numbers must be controlled material-by-material (using NUMCMP) n_total=8000 *dim,t_out,array,n_total /sol antype,4 ! *do,ii,1,400 /post1 ! Reading temperature distribution data from aniso_ht.rth (result file) file,aniso_ht,rth set,ii etable,t_res,temp ! Element table of temperature distribution ! Storing temperature data into array *do,jj,1,n_total *get,tt1,etab,1,elem,jj t_out(jj)=tt1 *enddo *if,ii,gt,1,then file,,rth *endif ! ! Re-defining element-to-element material numbers /prep7 *do,jj,1,n_total/2 emodif,jj,mat,nint(t_out(jj))-273 emodif,jj+4000,mat,nint(t_out(jj+4000))-173 *enddo /sol *if,ii,eq,1,then antype,trans ! Initial condition setup. Node components pre-defined ! Phi of exterior surface nodes -> RH of environment ic,exterior,temp,H0*exp(Eh/T0) ! Phi of interior nodes -> zero (initially fully dried) ic,interior,temp,0 *else antype, ,rest *endif ! Environment temperature was assumed to be controlled as in A.1 ! Note: Temperature inside polymers was input from the heat transfer T1=T0+(1/60)*ii*dt time,ii*dt ! Instead of ambient temperature, actual surface temperature ! has to used to calculate BC because of temperature difference ! between environment and solid surface (n_bc: node number at surface) ! If temperature is not uniform over boundary surfaces, ! BC should be input node-to-node d,exterior,temp,t_out(n_bc) nsub,1,1,1 solv *enddo

Fig. 8.18
figure 18

General solution process of the anisothermal problem using ANSYS

From a practical point of view, the spatially anisothermal complexity is not needed for most of the problems since spatial temperature gradients during heating or cooling can be ignored (usually less than 1°C). In addition, the time step can be controlled in an automatic manner by implementing a customized macro for time step adjustment while taking the rate of concentration change at each step into consideration.

8.1.3 A.3 Templates for the Combined Analysis

8.1.3.1 A.3.1 Program to Change the Record Key

This program changes the record key of the nodal concentration (221) obtained from a diffusion analysis using ABAQUS so that the concentration has the record key of the temperature (201). The detailed explanation about subroutines and variables used in this program is available in [61]: SUBROUTINE diff2temp INCLUDE 'aba_param.inc' DIMENSION ARRAY(513), JRRAY(NPRECD,513) EQUIVALENCE (ARRAY(1), JRRAY(1,1)) PARAMETER (MXUNIT=21) INTEGER LRUNIT(2,MXUNIT),LUNIT(10) CHARACTER FNAME*80 DATA LUNIT/1,5,6,7,9,11,12,13,20,28/ NRU = 1 LOUTF = 2 LRUNIT(1,1)=8 LRUNIT(2,1)=2 WRITE(6,60) 60 FORMAT(1X,'Enter the name of the input file(s) (w/o extension):') READ(5,'(A)') FNAME CALL INITPF (FNAME, NRU, LRUNIT, LOUTF) JUNIT=8 KEYPRV = 0 DO 100 INRU = 1, NRU JUNIT = LRUNIT(1,INRU) CALL DBRNU (JUNIT) I2001 = 0 DO 80 IXX2 = 1, 100 DO 80 IXX = 1, 99999 CALL DBFILE(0,ARRAY,JRCD) C WRITE(6,*) 'KEY/RECORD LENGTH = ', JRRAY(1,2), JRRAY(1,1) IF (JRCD .NE. 0 .AND. KEYPRV .EQ. 2001) THEN WRITE(6,*) 'END OF FILE #', INRU CLOSE (JUNIT) GOTO 100 ELSE IF (JRCD .NE. 0) THEN WRITE(6,*) 'ERROR READING FILE #', INRU CLOSE (JUNIT) GOTO 110 ENDIF LWRITE=1 IF (INRU.GT.1) THEN IF (JRRAY(1,2).GE.1900 .AND. JRRAY(1,2).LE.1909) LWRITE=0 IF (JRRAY(1,2).GE.1912 .AND. JRRAY(1,2).LT.1922) LWRITE=0 IF (JRRAY(1,2) .EQ. 2001 .AND. I2001 .EQ. 0) THEN I2001 = 1 LWRITE = 0 ENDIF ENDIF IF (INRU .EQ. 1 .OR. LWRITE .EQ. 1) THEN KEY=JRRAY(1,2) IF((KEY.EQ.1900).OR.(KEY.EQ.1901).OR. (KEY.EQ.1902).OR. 1 (KEY.EQ.1910).OR.(KEY.EQ.1911).OR. (KEY.EQ.1921).OR. 2 (KEY.EQ.1922).OR.(KEY.EQ.1980).OR. (KEY.EQ.2000).OR. 3 (KEY.EQ.2001).OR.(KEY.EQ.1)) THEN CALL DBFILW(1,ARRAY,JRCD) IF (JRCD .NE. 0) THEN WRITE(6,*) 'ERROR WRITING FILE' CLOSE (JUNIT) GOTO 110 ENDIF C C If a current RECORD KEY is 221, the key is changed into 201 and the associated data C are written to an output file. C ELSE IF( (KEY.EQ.221)) THEN JRRAY(1,2)=201 CALL DBFILW(1,ARRAY,JRCD) IF (JRCD .NE. 0) THEN WRITE(6,*) 'ERROR WRITING FILE' CLOSE (JUNIT) GOTO 110 ENDIF ENDIF ENDIF KEYPRV = JRRAY(1,2) 80 CONTINUE 100 CONTINUE 110 CONTINUE CLOSE(9) C RETURN END

8.1.3.2 A.3.2 Example Program for UEXPAN

The macro listed below combines hygroscopic swelling and thermal expansion to define a total volumetric strain in ABAQUS: SUBROUTINE UEXPAN(EXPAN,DEXPANDT,TEMP,TIME,DTIME,PREDEF,DPRED, $ STATEV,CMNAME,NSTATV) C INCLUDE 'ABA_PARAM.INC' C CHARACTER*80 CMNAME C DIMENSION EXPAN(*),DEXPANDT(*),TEMP(2),TIME(2),PREDEF(*), $ DPRED(*),STATEV(NSTATV) C EXPAN(1) : VOLUMETRIC STRAIN C TEMP(1) : TEMPERATURE AT T+DT C TEMP(2) : TEMPERATURE INCREMENT C PREDEF(1): FIELD VARIABLE AT T+DT (I.E., NORMALIZED CONCENTRATION ) C DPRED(1) : FIELD VARIABLE INCREMENT ALPHA = 1.0D-05 BETA = 1.D-1 SOLU = 1 EXPAN(1) = ALPHA*TEMP(2)+ SOLU*BETA*PREDEF(1) C RETURN END

8.1.3.3 A.3.3 ANSYS Input Template for Hygro-Thermal Loading

This example program illustrates (1) how to define CHS and (2) how to read the distributions of moisture concentration and temperature from separate external result files: ... ! DEFINE MATERIAL PROPERTIES INCLUDING SWELLING COEFFICIENT (N-MM-SEC-K) EX,1,3E3 NUXY,1,0.4 ALPX,1,30E-6 TB,SWELL,1 ! C72=10 FOR ACTIVATION OF USERSW ! EPS=C67*(FLUENCE)^C68 WHERE C67=SWELLING COEFFICIENT AND C68=1 TBDATA,72,10 TBDATA,67,0.1,1 ... ... ! READ MOISTURE CONCENTRATION FIELD FROM RESULT FILE (HYGRO.RTH) ! ELEMENT NUMBER MUST BE COMPRESSED (NUMCMP) IN ADVANCE ALLS LDREAD,TEMP,NO_STEP,NO_SUBSTEP,HYGRO,RTH ! CONVERT DUMPED TEMPERATURE FIELD TO FLUENCE FIELD *DO,II,1,NO_ELEM *GET,BF_MOIST,NODE,II,NTEMP BF,II,FLUE,BF_MOIST *ENDDO ! READ ACTUAL TEMPERATURE FIELD FROM RESULT FILE (TEMPERATURE.RTH) LDREAD,TEMP,NO_STEP,NO_SUBSTEP,TEMPERATURE,RTH ...

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jang, C., Han, B. (2010). Modeling of Moisture Diffusion and Moisture-Induced Stresses in Semiconductor and MEMS Packages. In: Fan, X., Suhir, E. (eds) Moisture Sensitivity of Plastic Packages of IC Devices. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5719-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5719-1_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5718-4

  • Online ISBN: 978-1-4419-5719-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics