Skip to main content

Failure Criterion for Moisture-Sensitive Plastic Packages of Integrated Circuit (IC) Devices: Application and Extension of the Theory of Thin Plates of Large Deflections

  • Chapter
  • First Online:
  • 2406 Accesses

Abstract

The maximum value of the von Mises stress in the molding compound at the chip corner is suggested to be used as a suitable failure criterion for moisture-induced plastic packages of integrated circuit (IC) devices. This criterion is able to reflect the role of various geometric and material characteristics affecting the package propensity to moisture-induced failures during high-temperature reflow soldering. It is suggested also that the von Mises stress be determined from the constitutive equations which are a generalization of the von Karman equations for large deflections of plates with consideration of thermoelastic strains. The generalized von Karman equations are applied to the underchip layer of the molding compound and consider thermal effects associated with the thermal expansion (contraction) mismatch of the materials, in the package as well as with temperature gradients. The predicted stresses are in good agreement with experimental observations. The calculated von Mises stresses can be used particularly for the development of “figures of merit” that would enable one to separate packages that need to be “baked” and “bagged” (or “rebaked” and “rebagged”) from those that supposedly do not. The calculated stresses can be used also to judge whether the qualification test conditions for sufficiently reliable packages (say, thick packages with small chips) could be safely “derated” to an actual factory humidity profile. Finally the calculated von Mises stress can be helpful in the selection of the most feasible molding compound for the given package design. A more reliable (and more expensive) material might be needed in the case of a thin package with a large chip, while a low-cost compound can be successfully employed in the case of a thick package with a small chip.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suhir, E., “Failure criterion for moisture sensitive plastic packages of integrated circuit (IC) devices: application of von-Karman’s equations with consideration of thermoelastic strains”, International Journal of Solids and Structures, 34(23), 2991–3019, 1997.

    Article  MATH  Google Scholar 

  2. Fan, X.J., Lim, T.B., “Mechanism analysis for moisture-induced failures in IC packages”, ASME International Mechanical Engineering Congress and Exposition, Nashville, TN IMECE/EPE-14, 1999.

    Google Scholar 

  3. Fan, X.J., Zhou, J., Zhang, G.Q., Ernst, L.J., 2005. “A micromechanics based vapor pressure model in electronic packages”, ASME Journal of Electronic Packaging, 127(3), 262–267.

    Article  Google Scholar 

  4. Fan, X.J., Zhang, G.Q., van Driel, W.D., Ernst, L.J., “Interfacial delamination mechanisms during reflow with moisture preconditioning”, IEEE Transactions on Components and Packaging Technologies, 31(2), 252–25, 2008.

    Google Scholar 

  5. Fukuzawa, I., Ishiguro, S., Nambu, S., “Moisture resistance degradation of plastic LSI’s by reflow soldering”, 23rd International Reliability Physics Symposium Proceedings, Orlando, FL, USA, pp. 192–197.

    Google Scholar 

  6. Suhir, E., “Failure criterion for moisture-sensitive plastic packages”, IEEE 45th ECTC, Las Vegas, NV, USA, pp. 266–284, 1995.

    Google Scholar 

  7. Timoshenko, S.P., Woinowski, K.S., Theory of Plates and Shells, 2nd edition. New York, NY: McGraw-Hill, 1959.

    Google Scholar 

  8. Suhir, E., Structural Analysis in Microelectronics and Fiber Optics, Vol. 1. New York, NY: Van-Nostrand Reinhold, 1991.

    Google Scholar 

  9. Suhir, E., “Predicted bow of plastic packages of integrated circuit devices”, Journal of Reinforced Plastics and Composites, 12, 951–972, 1993.

    Article  Google Scholar 

  10. Bhattachayya, B.K., Huffman, W.A., Jahshman, W.E., Natarajan, B., “Moisture absorption and mechanical performance of surface mountable plastic packages”, IEEE 38th ECC Proceedings, Los Angeles, CA, USA, pp. 49–58, 1988.

    Google Scholar 

  11. Cognett, C., “Popcorn effect in reflow soldering of surface mounted assemblies in plastic housing”. Electron, 37, 116–120 (in German), 1988.

    Google Scholar 

  12. Conrad, T.R., Shook, R.L., “Impact of moisture/reflow induced delaminations on integrated circuit thermal performance”, IEEE 44th ECTC Proceedings, Washington, DC, USA, pp. 527–553, 1994.

    Google Scholar 

  13. EIA/JEDEC Standard, “Moisture-induced stress sensitivity for plastic surface mount devices”, Test Method A112? A, Arlington, VA: Electronic Industries Association, Engineering Department, 1995.

    Google Scholar 

  14. Flood, C.A., White, G.M., “Desorption equilibrium moisture relationships for popcorn”, Transactions of the American Society of Agricultural Engineers, 27, 561–565, 1984.

    Google Scholar 

  15. Ganssan, G.S., Berg, H., “Model and analyses for reflow cracking phenomenon in SMT plastic packages”. IEEE 43rd ECTC Proceedings, pp. 653–660, Orlando, FL 1993.

    Google Scholar 

  16. Ilyas, QSM, Poborets, B., “Evaluation of moisture sensitivity of surface mount plastic packages”, edited by Suhir, E., Structural Analysis in Microelectronics and Fiber Optics, EEP Vol. 7. New Orleans, LA: ASME, pp. 145–156, 1993.

    Google Scholar 

  17. Ilyas, Q.S.M., Potter, M., “Experimental evaluation of moisture induced failures of surface mount plastic packages”, IEEE 46th ECTC Proceedings, Orlando, FL, USA, pp. 56–67, 1996.

    Google Scholar 

  18. IPC-SM-786 Standard, “Recommended procedures for handling of moisture sensitive plastic IC packages”,IPC Test Method 650-2.6.20. Plastic Surface Mount Component Cracking. Lincolnwood, IL: IPC (Inst. for Interconnecting and Packaging Electronic Circuits).

    Google Scholar 

  19. Klinger, D.J., “Humidity acceleration factor for plastic packaged electronic devices”, Quality and Reliability Engineering International, 7, 365–370, 1991.

    Article  Google Scholar 

  20. Lea, C., Tolbrook, D., “Moisture induced failure in plastic surface mount packages”, Soldering and Surface-Mount Technology, 3, 30–34, 1989.

    Article  Google Scholar 

  21. Liu, S., “Debonding and cracking of microlaminates due to mechanical and hydro-thermal loads for plastic packaging”, edited by Suhir, E., Structural Analysis in Microelectronics and Fiber Optics, EEP Vol. 7. New Orleans, LA: ASME, pp. 1–11, 1993.

    Google Scholar 

  22. Miles, B., Freyman, B., “The elimination of the popcorn phenomenon in overmolded plastic pad array carriers”, IEPS Proceedings, Vol. 1, pp. 605–614, San Diego, CA 1992.

    Google Scholar 

  23. Pope, D., Clifton, L., “Package cracking in plastic surface mount components as a function of package moisture content and geometry”, 5th Annual IEEE/IETM/CHMT Syrup. Proceedings, pp. 89–92, 1988.

    Google Scholar 

  24. Shook, R.L., “Moisture sensitivity characterization of plastic surface mount devices using scanning acoustic microscopy”, 30th International Reliability Physics Symposium Proceedings, pp. 157–168, 1992.

    Google Scholar 

  25. Shoraka, F., “Package and molding compound mechanic”, 6th Annual International Electronics Packaging Conference Proceedings, pp. 294–312, 1986.

    Google Scholar 

  26. Steiner, T., Suhl, D., “Investigation of large PLCC package cracking during surface mount exposure”, IEEE CHMT Transactions CHMT-10, pp. 209–216, 1987.

    Google Scholar 

  27. Suhir, E., Ilyas, Q.S.M., “‘Thick’ plastic packages with ‘small’ chips vs ‘thin’ packages with ‘large’ chips: how different is their propensity to moisture-induced failure?”, edited by Suhir, E., Structural Analysis in Microelectronics and Fiber Optics. Atlanta, GA: ASME, pp. 101–125, 1996.

    Google Scholar 

  28. Suzuki, S., Oota, K., “Analysis of solder crack phenomena in LSI plastic packages”, Joint ASME/JSME Conference on Electronic Packaging Proceedings, Milpitas, CA, USA, pp. 343–347, 1992.

    Google Scholar 

  29. Tencer, M., “Moisture ingress into nonhermetic enclosures and packages. A quasi steady state model for diffusion and attenuation of ambient humidity variations”, IEEE 44th ECTC Proceedings, Washington, DC, USA, pp. 196–209, 1994.

    Google Scholar 

  30. Thompson, P., “Reliability development and qualification of a low-cost PQFT-based MCM”, IEEE 44th ECTC Proceedings, Washington, DC, USA, pp. 186–190, 1994.

    Google Scholar 

  31. van Doorselaer, K., de Zeeuw, K., “Relation between delamination and temperature cycling induced failures in plastic packaged devices”, IEEE CHMT Transactions CHMT-13, pp. 879–882, 1990.

    Google Scholar 

  32. van Vroonhoven, J.C.W., “Effects of adhesion and delamination on stress singularities in plastic-packaged integrated circuits”, ASME Journal of Electronic Packaging, 115, 28–33, 1993.

    Article  Google Scholar 

  33. Yamada, S.E., “A bonded joint analysis for surface mount components”, ASME Journal of Electronic Packaging, 114, 1–7, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Suhir .

Editor information

Editors and Affiliations

Appendix. Clamped Plate of Finite Aspect Ratio Experiencing Large Deflections

Appendix. Clamped Plate of Finite Aspect Ratio Experiencing Large Deflections

If the temperature in a rectangular plate changes in the through-thickness direction only, then for an initially flat and stress flee plate, equations (10.16) can be used to evaluate the deflections w(x, y) and the stress function \(\phi \left( {x,\,y} \right)\).

The functions w(x, y) and \(\phi \left( {x,\,y} \right)\) can be sought in the form [8]:

$$w\left( {x,\,y} \right) = fw^ * \left( {x,\,y} \right), \quad \phi \left( {x,\,y} \right) = f^2 \phi ^ * \left( {x,\,y} \right),$$
((10.83))

where f is the maximum deflection at the center of the plate, the coordinate function \(w^ * \left( {x,\,y} \right)\) is chosen in such a way that the boundary conditions for the deflection function at the plate’s contour be fulfilled, and the function \(\phi ^ * \left( {x,\,y} \right)\) is to be determined. Substituting relationships (10.83) into the second equation in equation (10.16), we obtain the following equation for the function \(\phi ^ * \left( {x,\,y} \right)\):

$$\nabla ^4 \phi ^ * \left( {x,\,y} \right) = - \frac{{E_c }}{2}L\left[ {w^ * \left( {x,\,y} \right), \,\,\, w^ * \left( {x,\,y} \right)} \right] = E_c \left[ {\left( {\frac{{\partial ^2 w^ * }}{{\partial x\partial y}}} \right)^2 - \frac{{\partial ^2 w^ * }}{{\partial x^2 }}\frac{{\partial ^2 w^ * }}{{\partial y^2 }}} \right],$$
((10.84))

where the equivalent modulus E c is expressed by formula (10.10).

In an approximate analysis one can assume for a plate clamped at the support contour

$$w^ * \left( {x,\,y} \right) = \cos ^2 \frac{{\pi x}}{a}\cos ^2 \frac{{\pi y}}{b}.$$
((10.85))

Then equation (10.84) yields

$$\begin{array}{rcl} \nabla ^4 \phi ^ * \left( {x,\,y} \right) & \displaystyle = & \displaystyle - \frac{{\pi ^4 E_0 }}{{2a^2 b^2 }}\left( {\cos \frac{{2\pi x}}{a} + \cos \frac{{2\pi y}}{b} + \cos \frac{{4\pi x}}{a} + \cos \frac{{4\pi y}}{b}} \right. \\ && \displaystyle \left. { + \, 2\cos \frac{{2\pi x}}{a}\cos \frac{{2\pi y}}{b} + \cos \frac{{2\pi x}}{a}\cos \frac{{4\pi y}}{b} + \cos \frac{{4\pi x}}{a}\cos \frac{{2\pi y}}{b}} \right) \\ \end{array}.$$
((10.86))

This equation has the following solution:

$$\begin{array}{rcl} \phi ^ * \left( {x,\,y} \right) & \displaystyle = & \displaystyle Ax^2 + By^2 + D_0 \cos \frac{{2\pi x}}{a} + D_1 \cos \frac{{2\pi y}}{b} + D_2 \cos \frac{{4\pi x}}{a} + D_3 \cos \frac{{4\pi y}}{b} \\ && \displaystyle + \, D_4 \cos \frac{{2\pi x}}{a}\cos \frac{{2\pi y}}{b} + D_5 \cos \frac{{2\pi x}}{a}\cos \frac{{4\pi y}}{b} + D_6 \cos \frac{{4\pi x}}{a}\cos \frac{{2\pi y}}{b}\,\,. \\ \end{array}$$
((10.87))

Substituting expression (10.87) into equation (10.86) we obtain the formulae for the constants \(D_0 \to D_6 \). Introducing equation (10.87) into conditions (10.9) of the nondeformability of the contour, we determine the constants A and B. Then, formula (10.87) results in the following expression for the function φ *:

$$\begin{array}{l} \phi ^ * \left( {x,\,y} \right) \displaystyle = \displaystyle \frac{{E_0 }}{{32}}\left\{ {\frac{{3\pi ^2 }}{{2\left( {1 - \upsilon ^2 } \right)}}} \left[ {\left( {\frac{\upsilon }{{a^2 }} + \frac{1}{{b^2 }}} \right)x^2 + \left( {\frac{1}{{a^2 }} + \frac{\upsilon }{{b^2 }}} \right)y^2 } \right] - \frac{{a^2 }}{{b^2 }}\cos \frac{{\pi x}}{a} \right.\\ \qquad\qquad\;\, \displaystyle - \, \frac{{a^2 }}{{b^2 }}\cos \frac{{\pi y}}{b} - \left( {\frac{a}{{4b}}} \right)^2 \cos \frac{{4\pi x}}{a} - \left( {\frac{b}{{4a}}} \right)^2 \cos \frac{{4\pi y}}{b} \\ \qquad\qquad\;\, \displaystyle - \frac{{2a^2 b^2 }}{{\left( {a^2 + b^2 } \right)}}\cos \frac{{2\pi x}}{a}\cos \frac{{2\pi y}}{b} + \, \frac{{a^2 b^2 }}{{\left( {4a^2 + b^2 } \right)^2 }}\cos \frac{{2\pi x}}{a}\cos \frac{{4\pi y}}{b} \\ \qquad\qquad\;\, \displaystyle \left. - \frac{{a^2 b^2 }}{{\left( {a^2 + 4b^2 } \right)^2 }}\cos \frac{{4\pi x}}{a} {\cos \frac{{2\pi y}}{b}} \right\}. (10.88)\\ \end{array}$$
((10.88))

The in-plane stresses can then be evaluated as follows:

$$\begin{array}{l} \displaystyle \sigma _x^0 = \frac{{\partial ^2 \phi }}{{\partial y^2 }} = f^2 \frac{{\partial ^2 \phi ^ * }}{{\partial y^2 }}\, {=}\, \frac{{\pi ^2 E_0 f^2 }}{{32}}\left[ {\frac{3}{{1 - \upsilon ^2 }}} \right.\left( {\frac{1}{{a^2 }}\, {+}\, \frac{\upsilon }{{b^2 }}} \right)\, {+}\, \frac{1}{{a^2 }}\cos \frac{{\pi y}}{b}\, {+}\, \frac{1}{{a^2 }}\cos \frac{{4\pi y}}{b} \\ \qquad\;\;\displaystyle + \, \frac{{8a^2 }}{{\left( {a^2 + b^2 } \right)^2 }}\cos \frac{{2\pi x}}{a}\cos \frac{{2\pi y}}{b} + \frac{{16a^2 }}{{\left( {4a^2 + b^2 } \right)^2 }}\cos \frac{{2\pi x}}{a}\cos \frac{{4\pi y}}{b}\\\qquad\;\;\displaystyle + \frac{{4a^2 }}{{\left( {a^2 + 4b^2 } \right)^2 }}\cos \frac{{4\pi x}}{a}\left. {\cos \frac{{2\pi y}}{b}} \right], \\ \displaystyle \sigma _y^0\, {=}\, \frac{{\partial ^2 \phi }}{{\partial x^2 }} = f^2 \frac{{\partial ^2 \phi ^ * }}{{\partial x^2 }}\, {=}\, \frac{{\pi ^2 E_0 f^2 }}{{32}}\left[ {\frac{3}{{1 - \upsilon ^2 }}} \right.\left( {\frac{\upsilon }{{a^2 }}\, {+}\, \frac{1}{{b^2 }}} \right)\, {+}\, \frac{1}{{b^2 }}\cos \frac{{\pi x}}{a}\, {+}\, \frac{1}{{b^2 }}\cos \frac{{4\pi x}}{a} \\ \qquad\;\;\displaystyle + \, \frac{{8b^2 }}{{\left( {a^2 + b^2 } \right)^2 }}\cos \frac{{2\pi x}}{a}\cos \frac{{2\pi y}}{b} + \frac{{16a^2 }}{{\left( {a^2 + 4b^2 } \right)^2 }}\cos \frac{{4\pi x}}{a}\cos \frac{{2\pi y}}{b} \\\qquad\;\;\displaystyle + \, \frac{{4b^2 }}{{\left( {4a^2 + b^2 } \right)^2 }}\cos \frac{{2\pi x}}{a}\left. {\cos \frac{{4\pi y}}{b}} \right],\\ \end{array}$$
((10.89))
$$\begin{array}{l} \displaystyle \tau _{xy}^0 = - \frac{{\partial ^2 \phi }}{{\partial x\partial y}} = - f^2 \frac{{\partial ^2 \phi ^ * }}{{\partial x\partial y}} = \frac{{\pi ^2 E_0 abf^2 }}{4}\left[ \frac{1}{{\left( {a^2 + b^2 } \right)^2 }}\sin \frac{{2\pi x}}{a}\sin \frac{{2\pi y}}{b} \right. \\ \qquad\;\;\displaystyle \left. + \, \frac{1}{{\left( {4a^2 + b^2 } \right)^2 }}\sin \frac{{2\pi x}}{a}\sin \frac{{4\pi y}}{b} + {\frac{1}{{\left( {a^2 + 4b^2 } \right)^2 }}\sin \frac{{4\pi x}}{a}\sin \frac{{2\pi y}}{b}} \right]. \\ \end{array}$$
((10.89))

At the point x = a/2, y = 0, formulae (10.89) yield

$$\sigma _x^0 = \left[ {\sigma _x^0 } \right]_\infty \psi _x^0 \left( \gamma \right), \quad \sigma _y^0 = \left[ {\sigma _y^0 } \right]_\infty \psi _y^0 \left( \gamma \right)$$
((10.90))

where

$$\left. \begin{array}{l} \displaystyle \left[ {\sigma _x^0 } \right]_\infty = \frac{{5 - 2\upsilon ^2 }}{{1 - \upsilon ^2 }}\frac{{\pi ^2 E_0 f^2 }}{{32a^2 }}\,, \\ \displaystyle \left[ {\sigma _y^0 } \right]_\infty = \frac{{3\upsilon ^2 }}{{1 - \upsilon ^2 }}\frac{{\pi ^2 E_0 f^2 }}{{32a^2 }}\, \\ \end{array} \right\}$$
((10.91))

are the in-plane stresses, calculated for the case of an elongated plate (\(b \to \infty ,\break \gamma = 0\)), and the factors

$$\left. \begin{array}{l} \displaystyle \psi _x^0 \left( \gamma \right) = 1 + \frac{3}{{5 - 2\upsilon ^2 }}\gamma ^2 - \frac{{4\left( {1 - \upsilon ^2 } \right)}}{{5 - 2\upsilon ^2 }}\gamma ^4 \left[ {\frac{2}{{\left( {1 + \gamma ^2 } \right)^2 }} + \frac{4}{{\left( {1 + 4\gamma ^2 } \right)^2 }} - \frac{1}{{\left( {4 + \gamma ^2 } \right)^2 }}} \right], \\ \displaystyle \psi _y^0 \left( \gamma \right) = 1 + \frac{{2 + \upsilon ^2 }}{{3\upsilon }}\gamma ^2 - \frac{{4\left( {1 - \upsilon ^2 } \right)}}{{3\upsilon ^2 }}\gamma ^4 \left[ {\frac{2}{{\left( {1 + \gamma ^2 } \right)^2 }} + \frac{4}{{\left( {1 + 4\gamma ^2 } \right)^2 }} - \frac{1}{{\left( {4 + \gamma ^2 } \right)^2 }}} \right]. \\ \end{array} \right\}$$
((10.92))

(10.92)

reflect the effect of the finite aspect ratio \(\gamma = a/b\). The shear stress at the point \(x = a/2, \, y = 0\) is zero.

For an elongated plate (\(\gamma = 0\)), formulae (10.92) yield \(\psi _x^0 (1) = \psi _y^0 (0) = 1\). For a square plate (\(\gamma = 1\)) these formulae result in the expressions

$$\psi _x^0 = \frac{{\left( {1 + \upsilon } \right)\left( {63 + 12\upsilon } \right)}}{{25\left( {5 - 2\upsilon ^2 } \right)}}, \qquad \psi _y^0 = 1 + \frac{{4\left( {3 + 10\upsilon ^2 } \right)}}{{75\upsilon }}.$$
((10.93))

If, for instance, v = 0.4, then the finite aspect ratio of the plate results in lower in-plane stresses in the x-direction and in higher stresses in the y-direction.

The first equation in equation (10.16) can be solved, using the Galerkin method (see, for instance, [7]). In accordance with the procedure of this method, we substitute formulae (10.83), with consideration of equation (10.84), into the first equation in equation (10.16), multiply the obtained expression by the coordinate function \(w^ * \left( {x,\,y} \right)\), and integrate the result over the plate’s surface A. This leads to the following equation for the dimensionless deflection \(\,\overline f = f/h\):

$$\bar f + \alpha \bar f^3 = \bar f_0,$$
((10.94))

where

$$\bar f_0 = \frac{1}{{Dh}}\frac{{\int_A {p\left( {x,\,y} \right)w^ * \left( {x,\,y} \right){\textrm{d}}A} }}{{\int_A {w^ * } \left( {x,\,y} \right)\nabla ^4 w^ * \left( {x,\,y} \right){\textrm{d}}A}}$$
((10.95))

is the dimensionless linear deflection (\(\alpha = 0\)) and

$$\alpha = - \frac{{h^3 }}{D}\frac{{\int_A {w^ * \left( {x,\,y} \right)L\left[ {w^ * \left( {x,\,y} \right) , \,\,w^ * \left( {x,\,y} \right)} \right]{\textrm{d}}A} }}{{\int_A {w^ * } \left( {x,\,y} \right)\nabla ^4 w^ * \left( {x,\,y} \right){\textrm{d}}A}}$$
((10.96))

is the parameter of nonlinearity. The solution to equation (10.94) can be written as

$$\bar f = \eta _f \bar f_0,$$
((10.97))

where the factor

$$\eta _f = \frac{1}{\sqrt[3]{\mu }}\left( {\sqrt[\lower 12pt\hbox{$^{^{3}}$}]{{1 + \sqrt {1 + \frac{8}{{27\mu }}} }} + \sqrt[\lower 12pt\hbox{$^{^{3}}$}]{{1 - \sqrt {1 + \frac{8}{{27\mu }}} }}} \right),\;\;\;\;\mu = 2\alpha \bar f_0^2$$
((10.98))

considers the effect of nonlinearity (“membrane” stresses).

Introducing equation (10.85) into formulae (10.95) and (10.96), we obtain

$$\bar f_0 = \frac{{pa^4 }}{{\pi ^4 D\left( {3 + 2\gamma ^2 + 3\gamma ^4 } \right)h}} = \frac{{12}}{{\pi ^4 }}\frac{p}{{E_D }}\frac{{1 - \upsilon ^2 }}{{3 + 2\gamma ^2 + 3\gamma ^4 }}\left( {\frac{a}{h}} \right)^4,$$
((10.99))
$$\begin{array}{l}\displaystyle \alpha = \frac{{3\left( {1 - \upsilon ^2 } \right)}}{{8\left( {3 + 2\gamma ^2 + 3\gamma ^3 } \right)}}\left[ \frac{9}{4}\frac{{1 + 2\upsilon \gamma ^2 + \gamma ^4 }}{{1 - \upsilon ^2 }} + \frac{{17}}{8}\left( {1 + \gamma ^4 } \right) + \frac{{12\gamma ^4 }}{{\left( {1 + \gamma ^2 } \right)^2 }} \right.\\\qquad\displaystyle \left. + \, \frac{{5\gamma ^4 }}{{\left( {1 + 4\gamma ^2 } \right)^2 }} + \frac{{5\gamma ^4 }}{{\left( {4 + \gamma ^2 } \right)^2 }} \right].\end{array}$$
((10.100))

Using formulae (10.94) for the bending moments acting in the plate’s cross sections, putting \(M_T = 0\) and considering the first formula in equation (10.83), we have

$$\left. \begin{array}{rcl} M_x & \displaystyle = & \displaystyle - Df\left( {\frac{{\partial ^2 w^ * }}{{\partial x^2 }} + \upsilon \frac{{\partial ^2 w^ * }}{{\partial y^2 }}} \right), \\ M_y & = & \displaystyle - Df\left( {\frac{{\partial ^2 w^ * }}{{\partial y^2 }} + \upsilon \frac{{\partial ^2 w^ * }}{{\partial x^2 }}} \right), \\ M_{xy} & = & \displaystyle - D\left( {1 - \upsilon } \right)f\frac{{\partial ^2 w^ * }}{{\partial x\partial y}}\,. \\ \end{array} \right\}$$
((10.101))

Using equation (10.85), we obtain

$$\left. \begin{array}{rcl} M_x & \displaystyle = & \displaystyle 2\pi ^2 Df\left( {\frac{1}{{a^2 }}\cos \frac{{2\pi x}}{a}\cos \frac{{2\pi y}}{b} + \frac{\upsilon }{{b^2 }}\cos \frac{{2\pi y}}{b}\cos \frac{{2\pi x}}{a}} \right), \\ M_y & \displaystyle = & \displaystyle 2\pi ^2 Df\left( {\frac{1}{{b^2 }}\cos \frac{{2\pi y}}{b}\cos \frac{{2\pi x}}{a} + \frac{\upsilon }{{a^2 }}\cos \frac{{2\pi x}}{a}\cos \frac{{2\pi y}}{b}} \right), \\ M_{xy} & \displaystyle = & \displaystyle - D\left( {1 - \upsilon } \right)f\frac{{\pi ^2 }}{{ab}}\sin \frac{{2\pi x}}{a}\sin \frac{{2\pi y}}{b}\,. \\ \end{array} \right\}$$

At the point \(x = a/2, \,y = 0\), these formulae yield

$$M_x = - \frac{{2\pi ^2 }}{{a^2 }}Df,\;\;\;\;M_y = - \frac{{2\pi ^2 }}{{a^2 }}\upsilon Df,\;\;\;\;M_{xy} = 0\,.$$

The bending stresses caused by these moments can be calculated as

$$\sigma _x = - \frac{{6M_x }}{{h^2 }} = \frac{{12\pi ^2 Df}}{{a^2\,h^2 }},\;\;\;\;\sigma _y = - \frac{{6M_y }}{{h^2 }} = \frac{{12\pi ^2 \upsilon Df}}{{a^2\,h^2 }}\,.$$
((10.102))

In the case of an elongated plate (\(b \to \infty , \quad \gamma = 0\)), formula (10.99) yields

$$\bar f_\infty = \bar f_0 = \frac{{pa^4 }}{{3\pi ^4 Dh}}\,.$$

Using this formula and formula (10.97), one can calculate the factor \(\eta ^* = \bar f/f_\infty = \eta _f (\overline f _0 /f_\infty )\), which considers the effect of the finite aspect ratio of the plate on its maximum deflection.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suhir, E., Fan, X. (2010). Failure Criterion for Moisture-Sensitive Plastic Packages of Integrated Circuit (IC) Devices: Application and Extension of the Theory of Thin Plates of Large Deflections. In: Fan, X., Suhir, E. (eds) Moisture Sensitivity of Plastic Packages of IC Devices. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5719-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5719-1_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5718-4

  • Online ISBN: 978-1-4419-5719-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics