Advertisement

The Evolution of an Automated Reading Strategy Tutor: From the Classroom to a Game-Enhanced Automated System

  • G. Tanner Jackson
  • Kyle B. Dempsey
  • Danielle S. McNamara
Chapter

Abstract

The implementation of effective pedagogical software is difficult to achieve. In this chapter we describe one possible solution to this problem, the evolutionary development of an Intelligent Tutoring System (ITS). This development process typically involves establishing training practices, developing automated instruction, and then amending motivational elements. While this development cycle can take years for completion because each step requires an iterative process of both execution and evaluation, it also has a greater chance of success. We illustrate such a cycle in this chapter in the evolution of an intelligent tutoring and gaming environment [i.e., interactive Strategy Trainer for Active Reading and Thinking-Motivationally Enhanced (iSTART-ME)] from an ITS (i.e., iSTART), which was originally conceived and tested as a human-delivered intervention (i.e., SERT).

Keywords

Reading Comprehension Latent Semantic Analysis Reading Strategy Intelligent Tutoring System Science Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported in part by the Institute for Educational Sciences (IES R305G020018-02; R305G040046; R305A080589) and National Science Foundation (NSF REC0241144; IIS-0735682). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the IES or NSF.

References

  1. Alexander, P. A., Murphy, P. K., Woods, B. S., Duhon, K. E., & Parker, D. (1997). College instruction and concomitant changes in students’ knowledge, interest, and strategy use: A study of domain learning. Contemporary Educational Psychology, 22, 125–146.CrossRefGoogle Scholar
  2. Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of Learning Sciences, 4, 167–207.CrossRefGoogle Scholar
  3. Bandura, A. (2000). Self-efficacy: The foundation of agency. In W. Perig & A. Grob (Eds.), Control of human behavior, mental processes, and consciousness: Essays in honor of the 60th birthday of August Flammer (pp. 17–33). Mahwah, NJ: Erlbaum.Google Scholar
  4. Bielaczyc, K., Pirolli, P. L., & Brown, A. L. (1995). Training in self-explanation and self-regulation strategies: Investigating the effects of knowledge acquisition activities on problem solving. Cognition and Instruction, 13, 221–252.CrossRefGoogle Scholar
  5. Boyer, K. E., Phillips, R., Wallis, M., Vouk, M., & Lester, J. (2008). Balancing cognitive and motivational scaffolding in tutorial dialogue. Proceedings of the Ninth International Conference on Intelligent Tutoring Systems (pp. 239–249). Canada: Montreal.Google Scholar
  6. Bransford, J., Brown, A., & Cocking, R., (Eds.) (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press. Retrieved form http://www.nap.edu/html/howpeople1/.Google Scholar
  7. Brown, A. L., & Palincsar, A. S. (1982). Inducing strategic learning from texts by means of informed, self-control training. Topics in Learning and Learning Disabilities, 2, 1–17.Google Scholar
  8. Chi, M. T. H., de Leeuw, N., Chiu, M. H., & Lavancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.Google Scholar
  9. Conole, G., Dyke, M., Oliver, M., & Seale, J. (2004). Mapping pedagogy and tools for effective learning design. Computers & Education, 43, 17–33.CrossRefGoogle Scholar
  10. Cox, R., McKendree, J., Tobin, R., Lee, J., & Mayes, T. (1999). Vicarious learning from dialogue and discourse. Instructional Science, 27, 431–458.Google Scholar
  11. Craig, S. D., Driscoll, D. M., & Gholson, B. (2004). Constructing knowledge from dialog in an intelligent tutoring system: Interactive learning, vicarious learning and pedagogical agents. Journal of Educational Multimedia and Hypermedia, 13, 163–183.Google Scholar
  12. Csikszentmihaly, M. (1990). Flow, the psychology of optimal experience. New York: Harper Collins.Google Scholar
  13. Dempsey, K. B., Brunelle, J. F., Jackson, G. T., Boonthum, C., Levinstein, I. B., & McNamara, D. S. (2009). MiBoard: Multiplayer interactive board game. In H.C. Lane, A. Ogan, & V. Shute (Eds.), Proceedings of the Workshop on Intelligent Educational Games at the 14th Annual Conference on Artificial Intelligence in Education (pp. 113–116). Brighton, UK: AIED.Google Scholar
  14. Dynarski, M., Agodini, R., Heaviside, S., Novak, T., Carey, N., Campuzano, L., et al. (2007). Effectiveness of reading and mathematics software products: Findings from the first student cohort. Washington, DC: U.S. Department of Education, Institute of Education Sciences.Google Scholar
  15. Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998). The measurement of textual coherence with Latent Semantic Analysis. Discourse Processes, 25, 285–307.CrossRefGoogle Scholar
  16. Graesser, A. C., Chipman, P., Leeming, F., & Biedenbach, S. (2009). Deep learning and emotion in serious games. In U. Ritterfield, M. Cody, & P. Vorderer (Eds.), Serious games: Mechanisms and effects (pp. 81–100). Mahwah, NJ: Routledge, Taylor and Francis.Google Scholar
  17. Graesser, A. C., Hu, X., & McNamara, D. S. (2005). Computerized learning environments that incorporate research in discourse psychology, cognitive science, and computational linguistics. In A. F. Healy (Ed.), Experimental cognitive psychology and its applications: Festschrift in honor of Lyle Bourne, Walter Kintsch, and Thomas Landauer (pp. 183–194). Washington, DC: American Psychological Association.Google Scholar
  18. Graesser, A. C., Hu, X., & Person, N. (2001). Teaching with the help of talking heads. In T. Okamoto, R. Hartley, D. G. S. Kinshuk , & J. P. Klus (Eds.), Proceedings IEEE international conference on advanced learning technology: Issues, achievements and challenges (pp. 460–461). Los Alamitos, CA: IEEE Computer Society.Google Scholar
  19. Graesser, A. C., Wiemer-Hastings, P., Wiemer-Hastings, K., Harter, D., Person, N., & the TRG (2000). Using latent semantic analysis to evaluate the contributions of students in AutoTutor. Interactive Learning Environments, 8, 129–148.CrossRefGoogle Scholar
  20. Gredler, M. E. (2004). Games and simulations and their relationships to learning. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (pp. 571–582). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. Greene, J. A., & Azevedo, R. (2007). Adolescents’ use of self-regulatory processes and their relation to qualitative mental model shifts while using hypermedia. Journal of Educational Computing Research, 36, 125–148.CrossRefGoogle Scholar
  22. Hu, X., Graesser, A. C., & the Tutoring Research Group (1998). Using WordNet and latent semantic analysis to evaluate the conversational contributions of learners in tutorial dialog. Proceedings of the international conference on computers in education, Vol. 2 (pp. 337–341). Beijing: Springer.Google Scholar
  23. Jackson, G. T., Boonthum, C., & McNamara, D. M. (2009). iSTART-ME: Situating extended learning within a game-based environment. Proceedings of the 14th international conference on artificial intelligence in education.Google Scholar
  24. Jackson, G. T., & Graesser, A. C. (2007). Content matters: An investigation of feedback categories within an ITS. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of AIED 2007 Conference (pp. 127–134). Amsterdam: IOS Press.Google Scholar
  25. Kennedy, D. (1998). Software development teams in higher education: An educator’s view. In R. M. Corderoy (Ed.), ASCILITE ‘98. flexibility: The next wave? Proceedings (pp. 373–385). Wollongong: ASCILITE.Google Scholar
  26. Landauer, T., & Dumais, S. T. (1997). A solution to Plato’s Problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.CrossRefGoogle Scholar
  27. Landauer, T., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259–284.CrossRefGoogle Scholar
  28. Landauer, T., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). (2007). Handbook of latent semantic analysis. Mahwah, NJ: Erlbaum.Google Scholar
  29. Levinstein, I. B., Boonthum, C., Pillarisetti, S. P., Bell, C., & McNamara, D. S. (2007). iSTART 2: Improvements for efficiency and effectiveness. Behavior Research Methods, 39, 224–232.CrossRefGoogle Scholar
  30. Louwerse, M. M., Graesser, A. C., Olney, A., & the TRG (2002). Good computational manners: Mixed-initiative dialog in conversational agents. In C. Miller (Ed.), Etiquette for human-computer work (pp. 71–76). Falmouth, MA: Sea Crest Conference Center.Google Scholar
  31. Magliano, J. P., Todaro, S., Millis, K., Wiemer-Hastings, K., Kim, H. J., & McNamara, D. S. (2005). Changes in reading strategies as a function of reading training: A comparison of live and computerized training. Journal of Educational Computing Research, 32, 185–208.CrossRefGoogle Scholar
  32. McNamara, D. S. (2000a). Background knowledge assessment as a key to improving learning from text (Project JSMF 95-56). Final report submitted to James S. McDonnell Foundation Program in Cognitive Studies for Educational Practice.Google Scholar
  33. McNamara, D. S. (2000b). Promoting active reading strategies to improve undergraduate students’ understanding of science. Final report submitted to the ODU College of Sciences and ODU Office of Academic Affairs.Google Scholar
  34. McNamara, D. S. (2004a). Aprender del texto: efectos de la estructura textual y las estrategias del lector. Revista Signos, 37, 19–30.CrossRefGoogle Scholar
  35. McNamara, D. S. (2004b). SERT: Self-explanation reading training. Discourse Processes, 38, 1–30.CrossRefGoogle Scholar
  36. McNamara, D. S., Boonthum, C., Levinstein, I. B., & Millis, K. (2007). Evaluating self-explanations in iSTART: Comparing word-based and LSA algorithms. In T. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis (pp. 227–241). Mahwah, NJ: Erlbaum.Google Scholar
  37. McNamara, D. S., Jackson, G. T., & Graesser, A. C. (2009). Intelligent tutoring and games. Proceedings of the 14th International conference on artificial intelligence in education.Google Scholar
  38. McNamara, D. S., Jackson, G. T., & Graesser, A. C. (in press). Intelligent tutoring and games (ITaG). In Y. Baek (Ed.), Gaming for classroom-based learning: Digital role playing as a motivator of study. Plainsboro, NJ: IGE Global Press.Google Scholar
  39. McNamara, D. S., Levinstein, I. B., & Boonthum, C. (2004). iSTART: Interactive strategy trainer for active reading and thinking. Behavioral Research Methods, Instruments, & Computers, 36, 222–233.CrossRefGoogle Scholar
  40. McNamara, D. S., O’Reilly, T., Best, R., & Ozuru, Y. (2006). Improving adolescent students’ reading comprehension with iSTART. Journal of Educational Computing Research, 34, 147–171.CrossRefGoogle Scholar
  41. McNamara, D. S., & Scott, J. L. (1999). Training reading strategies. In M. Hahn & S. C. Stoness (Eds.), Proceedings of the twenty first annual conference of the cognitive science society (pp. 387–392). Hillsdale, NJ: Erlbaum.Google Scholar
  42. McNamara, D. S., & Shapiro, A. M. (2005). Multimedia and hypermedia solutions for promoting metacognitive engagement, coherence, and learning. Journal of Educational Computing Research, 33, 1–29.CrossRefGoogle Scholar
  43. Millis, K., Kim, H. J., Todaro, S., Magliano, J. P., Wiemer-Hastings, K., & McNamara, D. S. (2004). Identifying reading strategies using latent semantic analysis: Comparing semantic benchmarks. Behavior Research Methods, Instruments, & Computers, 36, 213–221.CrossRefGoogle Scholar
  44. Moreno, R., & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of Educational Psychology, 97, 117–128.CrossRefGoogle Scholar
  45. Muñoz, B., Magliano, J. P., Sheridan, R., & McNamara, D. S. (2006). Typing versus thinking aloud when reading: Implications for computer-based assessment and training tools. Behavior Research Methods, Instruments, & Computers, 38, 211–217.CrossRefGoogle Scholar
  46. Okan, Z. (2003). Edutainment: is learning at risk? British Journal of Educational Technology, 34, 255–264.CrossRefGoogle Scholar
  47. Oliver, R. (2002). Winning the toss and electing to bat: Maximizing the opportunities of online learning. In C. Rust (Ed.), Proceedings of the 9th improving student learning conference (pp. 35–44). Oxford: OCSLD.Google Scholar
  48. O’Reilly, T., Best, R., & McNamara, D. S. (2004). Self-Explanation reading training: Effects for low-knowledge readers. In K. Forbus, D. Gentner, T. Regier (Eds.), Proceedings of the twenty-sixth annual meeting of the cognitive science society (pp. 1053–1058). Mahwah, NJ: Erlbaum.Google Scholar
  49. O’Reilly, T., Sinclair, G. P., & McNamara, D. S. (2004a). iSTART: A web-based reading strategy intervention that improves students’ science comprehension. In Kinshuk, D. G. S. & P. Isaías (Eds.), Proceedings of the IADIS international conference cognition and exploratory learning in digital age: CELDA 2004 (pp. 173–180). Lisbon, Portugal: IADIS Press.Google Scholar
  50. O’Reilly, T., Sinclair, G. P., & McNamara, D. S. (2004b). Reading strategy training: Automated verses live. In K. Forbus, D. Gentner, T. Regier (Eds.), Proceedings of the twenty-sixth annual meeting of the cognitive science society (pp. 1059–1064). Mahwah, NJ: Erlbaum.Google Scholar
  51. O’Reilly, T., Taylor, R. S., & McNamara, D. S. (2006). Classroom based reading strategy training: Self-explanation vs. reading control. In R. Sun & N. Miyake (Eds.), Proceedings of the 28th annual conference of the cognitive science society (pp. 1887). Mahwah, NJ: Erlbaum.Google Scholar
  52. Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 117–175.CrossRefGoogle Scholar
  53. Pashler, H., Bain, P., Bottage, B., Graesser, A., Koedinger, K., McDaniel, M., et al. (2007). Organizing instruction and study to improve student learning (NCER 2007–2004). Washington, DC: National Center for Educational Research, Institute of Education Sciences, U.S. Department of Education.Google Scholar
  54. Pressman, R. S. (1997). Software engineering: A practitioner’s approach (4th ed.). New York: McGraw-Hill Companies Inc.Google Scholar
  55. Ricci, K., Salas, E., & Cannon-Bowers, J. A. (1996). Do computer-based games facilitate knowledge acquisition and retention? Military Psychology, 8(4), 295–307.CrossRefGoogle Scholar
  56. Roy, M., & Chi, M. T. H. (2005). The self-explanation principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 271–286). New York: Cambridge University Press.CrossRefGoogle Scholar
  57. Shapiro, A. M., & McNamara, D. S. (2000). The use of latent semantic analysis as a tool for the quantitative assessment of understanding and knowledge. Journal of Educational Computing Research, 22, 1–36.CrossRefGoogle Scholar
  58. Taylor, R., O’Reilly, T., Sinclair, G., & McNamara, D. S. (2006). Enhancing learning of expository science texts in a remedial reading classroom via iSTART. Proceedings of the 7th international conference of learning sciences (pp. 765–770). Bloomington, IN.Google Scholar
  59. Thomas, R., Cahill, J., & Santilli, L. (1997). Using an interactive computer game to increase skill and self-efficacy regarding safer sex negotiation: Field test results. Health Education & Behavior, 24, 71–86.CrossRefGoogle Scholar
  60. Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.Google Scholar
  61. Wiemer-Hastings, P., Wiemer-Hastings, K., & Graesser, A. (1999). Improving an intelligent tutor’s comprehension of students with Latent Semantic Analysis. In S. P. Lajoie & M. Vivet (Eds.), Artificial intelligence in education (pp. 535–542). Amsterdam: IOS Press.Google Scholar
  62. Witmer, B. G., & Singer, M. J. (1994). Measuring immersion in virtual environments (Technical Rep. 1014). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. Tanner Jackson
    • 1
  • Kyle B. Dempsey
    • 1
  • Danielle S. McNamara
    • 1
  1. 1.University of MemphisMemphisUSA

Personalised recommendations