Advertisement

Flaked and Ground Stone Tools

  • Mary E. Malainey
Chapter
Part of the Manuals in Archaeological Method, Theory and Technique book series (MATT)

Abstract

Analyses of stone tools are most often conducted to obtain provenance information or determine the time of site occupation. As outlined in the following section, there is a long history of provenance studies of obsidian. Recent studies in South America show geochronological techniques can aid in the discrimination of obsidian sources with similar composition. Although the composition of chert is more variable, a recent study has demonstrated that valuable information can be garnered by applying a range of techniques. Compositional studies of andesite, dacite, basalt, and rhyolite have also been conducted. While trace element compositions are frequently used to characterize lithic materials, provenience studies of steatite and turquoise demonstrate other strategies may be more suitable for materials with highly variable compositions.

Keywords

Instrumental Neutron Activation Analysis Great Basin Thermal Ionization Mass Spectrometry Bivariate Plot Provenance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Williams-Thorpe, O. 1995 Obsidian in the Mediterranean and the Near East: A Provenancing Success Story. Archaeometry 37(2):217–248.CrossRefGoogle Scholar
  2. Bellot-Gurlet, L., G. Poupeau, O. Dorighel, Th. Calligaro, J.-C. Dran, and J. Salomon 1999 A PIXE/Fission-Track Dating Approach to Sourcing Studies of Obsidian Artefacts in Colombia and Ecuador. Journal of Archaeological Science 26(8):855–860.CrossRefGoogle Scholar
  3. Truncer, James, M. D. Glascock, and H. Neff 1998 Steatite Source Characterization in Eastern North America: New Results Using Instrumental Neutron Activation Analysis. Archaeometry 40(1):23–44.CrossRefGoogle Scholar
  4. Truncer, James 2004 Steatite Vessel Age and Occurrence in Temperate Eastern North America. American Antiquity 69(3):487–513.CrossRefGoogle Scholar
  5. Hull, Sharon, Mostafa Fayek, Frances J. Mathien, Phillip Shelley, and Kathy R. Durand 2008 A New Approach to Determining the Geological Provenance of Turquoise Artifacts using Hydrogen and Copper Stable Isotopes. Journal of Archaeological Science 35(5):1355–1369.CrossRefGoogle Scholar
  6. Bellot-Gurlet, Ludovic, Olivier Dorighel, and Gérard Poupeau 2008 Obsidian Provenance Studies in Colombia and Ecuador: Obsidian Sources Revisited. Journal of Archaeological Science 35(2):272–289.CrossRefGoogle Scholar
  7. Glascock, M. D., G. E. Braswell, and R. H. Cobean 1998 A Systematic Approach to Obsidian Source Characterization. In Archaeological Obsidian Studies: Method and Theory, edited by M. S. Shackley, pp. 15–66. Springer/Plenum Press, New York.Google Scholar
  8. Richter, Daniel 2007 Advantages and Limitations of Thermoluminescence Dating of Heated Flint from Paleolithic Sites. Geoarchaeology: An International Journal 22(6):671–683.CrossRefGoogle Scholar
  9. Asaro, F., E. Salazar, H. V. Michel, R. L. Burger, and F. H. Stross 1994 Ecuadorian Obsidian Sources used for Artifact Production and Methods for Provenience Assignments. Latin American Antiquity 5(3):257–277.CrossRefGoogle Scholar
  10. Craig, N., R. J. Speakman, R. S. Popelka-Filcoff, M. D. Glascock, J. D. Robertson, M. S. Shackley, and M. S. Aldenderfer 2007 Comparison of XRF and PXRF for Analysis of Archaeological Obsidian from Southern Perú. Journal of Archaeological Science 34(12):2012–2024.CrossRefGoogle Scholar
  11. Anovitz, Lawrence M., J. M. Elam, Lee R. Riciputi, and David R. Cole 1999 The Failure of Obsidian Hydration Dating: Sources, Implications, and New Directions. Journal of Archaeological Science 26(7):735–752.CrossRefGoogle Scholar
  12. Lyons, William H., Michael D. Glascock, and Peter J. Mehringer Jr 2003 Silica from Sources to Site: Ultraviolet Fluorescence and Trace Elements Identify Cherts from Lost Dune, Southeastern Oregon, USA. Journal of Archaeological Science 30(9):1139–1159.CrossRefGoogle Scholar
  13. Glascock, M. D. 1994 New World Obsidian: Recent Investigations. In Archaeometry of Pre-Columbian Sites and Artifacts, Proceedings of the 28th Annual Symposium on Archaeometry, edited by P. Meyers and D. A. Scott, pp. 113–134. Getty Conservation Institute, Los Angeles.Google Scholar
  14. Jones, George T., Charlotte Beck, Eric E. Jones, and Richard E. Hughes 2003 Lithic Source Use and Paleoarchaic Foraging Territories in the Great Basin. American Antiquity 68(1):5–38.CrossRefGoogle Scholar
  15. Pollock, Stephen G., Nathan D. Hamilton, and Richard A. Boisvert 2008 Archaeological Geology of Two Flow-banded Spherulitic Rhyolites in New England, USA: Their History, Exploitation and Criteria for Recognition. Journal of Archaeological Science 35(3):688–703.CrossRefGoogle Scholar
  16. Morgenstein, M. E., S. Luo, T.-L. Ku, and J. Feathers 2003 Uranium-Series and Luminescence Dating of Volcanic Lithic Artefacts. Archaeometry 45(3):503–518.CrossRefGoogle Scholar
  17. Rink, W. J., D. Richter, H. P. Schwarcz, A. E. Marks, K. Monigal, and D. Kaufman 2003 Age of the Middle Palaeolithic Site of Rosh Ein Mor, Central Negev, Israel: Implications for the Age Range of the Early Levantine Mousterian of the Levantine Corridor. Journal of Archaeological Science 30(2):195–204.CrossRefGoogle Scholar
  18. Tykot, Robert H. 1997 Characterization of the Monte Arci (Sardinia) Obsidian Sources. Journal of Archaeological Science 24(5):467–479. 2006 Isotope Analyses and the Histories of Maize. In Histories of Maize, edited by John E. Staller, Robert H. Tykot and Bruce F. Benz, pp. 131–142. Academic, Boston.CrossRefGoogle Scholar
  19. Yacobaccio, Hugo D., Patricia S. Escola, Fernando X. Pereyra, Marisa Lazzari, and Michael D. Glascock 2004 Quest for Ancient routes: Obsidian Sourcing Research in Northwestern Argentina. Journal of Archaeological Science 31(2):193–204.CrossRefGoogle Scholar
  20. Stevenson, Christopher M., Ihab M. Abdelrehim, and Steven W. Novak 2001 Infra-red Photoacoustic and Secondary Ion Mass Spectrometry Measurements of Obsidian Hydration Rims. Journal of Archaeological Science 28(1):109–115. 2004 High Precision Measurement of Obsidian Hydration Layers on Artifacts from the Hopewell Site using Secondary Ion Mass Spectrometry. American Antiquity 69(3):555–568.CrossRefGoogle Scholar
  21. Pollard, A. M., and Carl Heron 1996 Archaeological Chemistry. Royal Society of Chemistry, Cambridge.Google Scholar
  22. Shackley, M. S. 1998 Gamma Rays, X-Rays and Stone Tools: Some Recent Advances in Archaeological Geochemistry. Journal of Archaeological Science 25(3):259–270. 2005 Obsidian: Geology and Archaeology in the North American Southwest. University of Arizona Press, Tucson. 2008 Archaeological Petrology and the Archaeometry of Lithic Material. Archaeometry 50(2):194–215.CrossRefGoogle Scholar
  23. Bellot-Gurlet, Ludovic, Olivier Dorighel, and Gérard Poupeau 2008 Obsidian Provenance Studies in Colombia and Ecuador: Obsidian Sources Revisited. Journal of Archaeological Science 35(2):272–289.CrossRefGoogle Scholar
  24. Glascock, M. D., G. E. Braswell, and R. H. Cobean 1998 A Systematic Approach to Obsidian Source Characterization. In Archaeological Obsidian Studies: Method and Theory, edited by M. S. Shackley, pp. 15–66. Springer/Plenum Press, New York.Google Scholar
  25. Lebo, Susan A., and Kevin T. M. Johnson 2007 Geochemical Sourcing of Rock Specimens and Stone Artifacts from Nihoa and Necker Islands, Hawai'i. Journal of Archaeological Science 34(6):858–871.CrossRefGoogle Scholar
  26. Friedman, Irving, and Robert L. Smith 1960 A New Dating Method Using Obsidian: Part I, The Development of the Method. American Antiquity 25(4):476–493.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mary E. Malainey
    • 1
  1. 1.Department of AnthropologyBrandon UniversityBrandonCanada

Personalised recommendations