Advertisement

Blood and Protein Residue Analysis

  • Mary E. Malainey
Chapter
Part of the Manuals in Archaeological Method, Theory and Technique book series (MATT)

Abstract

Proteins are giant molecules made up of subunits, called amino acids (Chapter 5). There are two major categories, fibrous and globular. Collagen is a fibrous protein and when extracted from archaeological bone is the material of choice for both radiocarbon dating (Chapter 8) and stable isotope analysis (Chapter 13). The rate at which amino acids transform from the L-form to a 50:50 mixture of both L-form and D-form enantiomers is the basis of amino acid racemization dating (Chapter 11). The techniques discussed in this section were originally only applied to residues believed to represent ancient blood. Protein residues from other sources are now examined, so the generic term “protein analysis” is used.

Keywords

Immunological Method Archaeological Material Blind Test Hemoglobin Molecule Amino Acid Racemization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Gurfinkel, D. M., and U. M. Franklin 1988 A Study of the Feasibility of Detecting Blood Residue on Artifacts. Journal of Archaeological Science 15(1):83–97.CrossRefGoogle Scholar
  2. Lehninger, Albert L., David L. Nelson, and Michael M. Cox 1993 Principles of Biochemistry. 2nd. Worth, New York.Google Scholar
  3. Smith, P. R., and M. T. Wilson 1992 Blood Residues on Ancient Stone Tool Surfaces: A Cautionary Note. Journal of Archaeological Science 19(3):237–241.CrossRefGoogle Scholar
  4. Loy, T. H., and B. L. Hardy 1992 Blood Residue Analysis of 90,000-Year-Old Stone Tools from Tabun Cave, Israel. Antiquity 66(250):24–35.Google Scholar
  5. Hortolà, Policarp 2002 Red Blood Cell Haemotaphonomy of Experimental Human Bloodstains on Techno-Prehistoric Lithic Raw Materials. Journal of Archaeological Science 29(7):733–739.CrossRefGoogle Scholar
  6. Fiedel, Stuart J. 1996 Blood from Stones? Some Methodological and Interpretive Problems in Blood Residue Analysis. Journal of Archaeological Science 23(1):139–147. 1997 Reply to Newman et al. Journal of Archaeological Science 24(11):1029–1030.CrossRefGoogle Scholar
  7. Williamson, B. S. 2000 Direct Testing of Rock Painting Pigments for Traces of Haemoglobin at Rose Cottage Cave, South Africa. Journal of Archaeological Science 27(9):755–762.CrossRefGoogle Scholar
  8. Reuther, Joshua D., Jerold M. Lowenstein, S. C. Gerlach, Darden Hood, Gary Scheuenstuhl, and Douglas H. Ubelaker 2006 The Use of an Improved pRIA Technique in the Identification of Protein Residues. Journal of Archaeological Science 33(4):531–537.CrossRefGoogle Scholar
  9. Kooyman, Brian, Margaret E. Newman, and Howard Ceri 1992 Verifying the Reliability of Blood Residue Analysis on Archaeological Tools. Journal of Archaeological Science 19(3):265–269.CrossRefGoogle Scholar
  10. Loy, T. H., Rhys Jones, D. E. Nelson, Betty Meehan, John Vogel, John Southon, and Richard Cosgrove 1990 Accelerator Radiocarbon Dating of Human Blood Proteins in Pigments from Late Pleistocene Art Sites in Australia. Antiquity 64(242):110–116.Google Scholar
  11. Newman, M. E., Robert M. Yohe II, B. Kooyman, and H. Ceri 1997 “Blood” from Stones? Probably: A Response to Fiedel. Journal of Archaeological Science 24(11):1023–1027.CrossRefGoogle Scholar
  12. Newman, Margaret E., Howard Ceri, and Brian Kooyman 1996 The Use of Immunological Techniques in the Analysis of Archaeological Materials – A Response to Eisele; With Report of Studies at Head-Smashed-In Buffalo Jump. Antiquity 70(269):677–682.Google Scholar
  13. Custer, Jay F., John Ilgenfritz, and Keith R. Doms 1988 A Cautionary Note on the Use of Chemstrips for Detection of Blood Residues on Prehistoric Stone Tools. Journal of Archaeological Science 15(3):343–345.CrossRefGoogle Scholar
  14. Shanks, O. C., M. Kornfeld, and W. Ream 2004 DNA and Protein Recovery from Washed Experimental Stone Tools. Archaeometry 46(4):663–672.CrossRefGoogle Scholar
  15. Hyland, D. C., J. M. Tersak, J. M. Adovasio, and M. I. Siegal 1990 Identification of the Species of Origin of Residual Blood on Lithic Material. American Antiquity 55(1):104–112.CrossRefGoogle Scholar
  16. Nelson, D. E. 1993 Second Thoughts on a Rock-Art Date. Antiquity 67(257):893–895.Google Scholar
  17. Cattaneo, C., K. Gelsthorpe, P. Phillips, and R. J. Sokol 1990 Blood in Ancient Human Bone. Nature 347(6291):339–339. 1993 Blood Residues on Stone Tools: Indoor and Outdoor Experiments. World Archaeology 25(1):29–43.CrossRefGoogle Scholar
  18. Newman, M., and P. Julig 1989 The Identification of Protein Residues on Lithic Artifacts from a Stratified Boreal Forest Site. Canadian Journal of Archaeology 13:119–132.Google Scholar
  19. Shanks, Orin C., Marcel Kornfeld, and Dee D. Hawk 1999 Protein Analysis of Bugas-Holding Tools: New Trends in Immunological Studies. Journal of Archaeological Science 26(9):1183–1191.CrossRefGoogle Scholar
  20. Tuross, Noreen, Ian Barnes, and Richard Potts 1996 Protein Identification of Blood Residues on Experimental Stone Tools. Journal of Archaeological Science 23(2):289–296.CrossRefGoogle Scholar
  21. Loy, Thomas H., and E. J. Dixon 1998 Blood Residues on Fluted Points from Eastern Beringia. American Antiquity 63(1):21–46.CrossRefGoogle Scholar
  22. Lowenstein, Jerold M. 1985 Molecular Approaches to the Identification of Species. American Scientist 73(6):541–547.Google Scholar
  23. Loy, Thomas H. 1983 Prehistoric Blood Residues: Detection on Tool Surfaces and Identification of Species of Origin. Science 220(4603):1269–1271. 1993 The Artifact as Site: An Example of the Biomolecular Analysis of Organic Residues on Prehistoric Tools. World Archaeology 25(1):44–63. 1994 Residue Analysis of Artifacts and Burned Rock from the Mustang Branch and Barton Sites (41HY209 and 41HY202. In Archaic and Late Prehistoric Human Ecology in the Middle Onion Creek Valley, Hays County, Texas. Volume 2: Topical Studies edited by R. A. Ricklis and M. B. Collins, pp. 607–627. University of Texas at Austin, Austin Texas.CrossRefGoogle Scholar
  24. Shanks, Orin C., Robson Bonnichsen, Anthony T. Vella, and Walt Ream 2001 Recovery of Protein and DNA Trapped in Stone Tool Microcracks. Journal of Archaeological Science 28(9):965–972.CrossRefGoogle Scholar
  25. Marlar, Richard A., Banks L. Leonard, Brian R. Billman, Patricia M. Lambert, and Jennifer E. Marlar 2000 Biochemical Evidence of Cannibalism at a Prehistoric Puebloan Site in Southwestern Colorado. Nature 407(6800):74–78.CrossRefGoogle Scholar
  26. Eisele, J. A., D. D. Fowler, G. Haynes, and R. A. Lewis 1995 Survival and Detection of Blood Residues on Stone Tools. Antiquity 69(262):35–46.Google Scholar
  27. Loy, Thomas H., and Andree R. Wood 1989 Blood Residue Analysis at Çayönü Tepesi, Turkey. Journal of Field Archaeology 16(4):451–460.CrossRefGoogle Scholar
  28. Downs, Elinor F., and Jerold M. Lowenstein 1995 Identification of Archaeological Blood Proteins: A Cautionary Note. Journal of Archaeological Science 22(1):11–16.CrossRefGoogle Scholar
  29. Kooyman, Brian, Margaret E. Newman, Christine Cluney, Murray Lobb, Shayne Tolman, Paul McNeil, and L. V. Hills 2001 Identification of Horse Exploitation by Clovis Hunters Based on Protein Analysis. American Antiquity 66(4):686–691.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mary E. Malainey
    • 1
  1. 1.Department of AnthropologyBrandon UniversityBrandonCanada

Personalised recommendations