Chemical and Environmental Agents (Including Chemotherapeutic Agents and Immunosuppression)

  • Richard J. Q. McNally
Part of the Molecular Pathology Library book series (MPLB, volume 4)


The etiology of leukemia and lymphoma is not clear. Both genetic and environmental factors are likely to be involved. At least two genetic or environmental events are likely to be needed to initiate a leukemia or lymphoma.1 However, the final precipitating event is most likely to be environmental. Putative environmental exposures include ionizing radiation, electromagnetic fields, chemical exposures, smoking, diet, alcohol consumption, vitamin supplementation, contaminated drinking water, infections, and medications (including chemotherapeutic agents).


Acute Myeloid Leukemia Acute Lymphoblastic Leukemia Chronic Lymphocytic Leukemia Down Syndrome Acute Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Knudson AG Jr. A two-mutation model for human cancer. Adv Viral Oncol. 1987;7:1–17.Google Scholar
  2. 2.
    McNally RJ, Parker L. Environmental factors and childhood acute leukemias and lymphomas. Leuk Lymphoma. 2006;47:583–598.CrossRefGoogle Scholar
  3. 3.
    McNally RJ, Eden TO. The epidemiology and aetiology of childhood cancer. In: Annales Nestle. Geneva: Karger; 2005:79–92.Google Scholar
  4. 4.
    Little J. Epidemiology of Childhood Cancer. Lyon: IARC Scientific Publications, No. 149; 1999.Google Scholar
  5. 5.
    Boice JD, Mumma MT, Blot WJ, et al. Childhood cancer mortality in relation to the St Lucie nuclear power station. J Radiol Prot. 2005;25:229–240.PubMedCrossRefGoogle Scholar
  6. 6.
    Davis S, Day RW, Kopecky KJ, et al. Childhood leukaemia in Belarus, Russia, and Ukraine following the Chernobyl power station accident: results from an international collaborative population-based case-control study. Int J Epidemiol. 2006;35:386–396.PubMedCrossRefGoogle Scholar
  7. 7.
    Richardson C, Montfort C. Ecological correlation studies. In: Elliott P, Wakefield J, Best N, et al., eds. Spatial Epidemiology: Methods and Applications. Oxford: Oxford University Press; 2000:205–220.Google Scholar
  8. 8.
    Noshchenko AG, Zamostyan PV, Bondar OY, et al. Radiation-induced leukemia risk among those aged 0–20 at the time of the Chernobyl accident: a case-control study in the Ukraine. Int J Cancer. 2002;99:609–618.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaatsch P, Spix C, Schulze-Rath R, et al. Leukaemia in young children living in the vicinity of German nuclear power plants. Int J Cancer. 2008;122:721–726.PubMedCrossRefGoogle Scholar
  10. 10.
    Linabery AM, Olshan AF, Gamis AS, et al. Exposure to medical test irradiation and acute leukemia among children with Down syndrome: a report from the Children’s Oncology Group. Pediatrics. 2006;118:e1499–e1508.PubMedCrossRefGoogle Scholar
  11. 11.
    Ostroumova E, Gagniere B, Laurier D, et al. Risk analysis of leukaemia incidence among people living along the Techa River: a nested case-control study. J Radiol Prot. 2006;26:17–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Schubauer-Berigan MK, Daniels RD, Fleming DA, et al. Chronic lymphocytic leukaemia and radiation: findings among workers at five US nuclear facilities and a review of the recent literature. Br J Haematol. 2007;139:799–808.PubMedCrossRefGoogle Scholar
  13. 13.
    Konogorov AP, Ivanov VK, Chekin SY, et al. A case-control analysis of leukemia in accident emergency workers of Chernobyl. J Environ Pathol Toxicol Oncol. 2000;19:143–151.PubMedGoogle Scholar
  14. 14.
    Muirhead CR, Bingham D, Haylock RG, et al. Follow up of mortality and incidence of cancer 1952–98 in men from the UK who participated in the UK’s atmospheric nuclear weapon tests and experimental programmes. Occup Environ Med. 2003;60:165–172.PubMedCrossRefGoogle Scholar
  15. 15.
    Mohner M, Lindtner M, Otten H, et al. Leukemia and exposure to ionizing radiation among German uranium miners. Am J Ind Med. 2006;49:238–248.PubMedCrossRefGoogle Scholar
  16. 16.
    Karunanayake CP, McDuffie HH, Dosman JA, et al. Occupational exposures and non-Hodgkin’s lymphomas: Canadian case-control study. Environ Health. 2008;7:44.PubMedCrossRefGoogle Scholar
  17. 17.
    Karipidis KK, Benke G, Sim MR, et al. Occupational exposure to ionizing and non-ionizing radiation and risk of non-Hodgkin lymphoma. Int Arch Occup Environ Health. 2007;80:663–670.PubMedCrossRefGoogle Scholar
  18. 18.
    Travis LB, Andersson M, Gospodarowicz M, et al. Treatment-associated leukemia following testicular cancer. J Natl Cancer Inst. 2000;92:1165–1171.PubMedCrossRefGoogle Scholar
  19. 19.
    Boice JD, Morin MM, Glass AG, et al. Diagnostic X-ray procedures and risk of leukemia, lymphoma and multiple myeloma. JAMA. 1991;265:1290–1294.CrossRefGoogle Scholar
  20. 20.
    Kabuto M, Nitta H, Yamamoto S, et al. Childhood leukemia and magnetic fields in Japan: a case-control study of childhood leukemia and residential power – frequency magnetic fields in Japan. Int J Cancer. 2006;119:643–650.PubMedCrossRefGoogle Scholar
  21. 21.
    Feizi AA, Arabi MA. Acute childhood leukemias and exposure to magnetic fields generated by high voltage overhead power lines – a risk factor in Iran. Asian Pac J Cancer Prev. 2007;8:69–72.PubMedGoogle Scholar
  22. 22.
    Schuz J, Svendsen AL, Linet MS, et al. Nighttime exposure to electromagnetic fields and childhood leukemia: an extended pooled analysis. Am J Epidemiol. 2007;166:263–269.PubMedCrossRefGoogle Scholar
  23. 23.
    Coleman MP, Bell CM, Taylor HL, et al. Leukaemia and residence near electricity transmission equipment: a case-control study. Br J Cancer. 1989;60:793–798.PubMedCrossRefGoogle Scholar
  24. 24.
    Lowenthal RM, Tuck DM, Bray IC. Residential exposure to electric power transmission lines and risk of lymphoproliferative and myeloproliferative disorders: a case-control study. Intern Med J. 2007;37:614–619.PubMedCrossRefGoogle Scholar
  25. 25.
    Tynes T, Haldorsen T. Residential and occupational exposure to 50 Hz magnetic fields and hematological cancers in Norway. Cancer Causes Control. 2003;14:715–720.PubMedCrossRefGoogle Scholar
  26. 26.
    Loomis DP, Savitz DA. Mortality from brain cancer and leukaemia among electrical workers. Br J Ind Med. 1990;47:633–638.PubMedGoogle Scholar
  27. 27.
    Sahl JD, Kelsh MA, Greenland S. Cohort and nested case-control studies of hematopoietic cancers and brain cancer among electric utility workers. Epidemiology. 1993;4:104–114.PubMedCrossRefGoogle Scholar
  28. 28.
    Floderus B, Persson T, Stenlund C, et al. Occupational exposure to electromagnetic fields in relation to leukemia and brain tumors: a case-control study in Sweden. Cancer Causes Control. 1993;4:465–476.PubMedCrossRefGoogle Scholar
  29. 29.
    Villeneuve PJ, Agnew DA, Miller AB, et al. Non-Hodgkin’s lymphoma among electric utility workers in Ontario: the evaluation of alternate indices of exposure to 60 Hz electric and magnetic fields. Occup Environ Med. 2000;57:249–257.PubMedCrossRefGoogle Scholar
  30. 30.
    Fabbro-Peray P, Daures JP, Rossi JF. Environmental risk factors for non-Hodgkin’s lymphoma: a population-based case-control study in Languedoc-Roussillon, France. Cancer Causes Control. 2001;12:201–212.PubMedCrossRefGoogle Scholar
  31. 31.
    Bethwaite P, Cook A, Kennedy J, et al. Acute leukemia in electrical workers: a New Zealand case-control study. Cancer Causes Control. 2001;12:683–689.PubMedCrossRefGoogle Scholar
  32. 32.
    Band PR, Le ND, Fang R, et al. Identification of occupational cancer risks in British Columbia: a population-based case-control study of 769 cases of non-Hodgkin’s lymphoma analyzed by histopathology subtypes. J Occup Environ Med. 2004;46:479–489.PubMedCrossRefGoogle Scholar
  33. 33.
    Willett EV, McKinney PA, Fear NT, et al. Occupational exposure to electromagnetic fields and acute leukaemia: analysis of a case-control study. Occup Environ Med. 2003;60:577–583.PubMedCrossRefGoogle Scholar
  34. 34.
    Monge P, Wesseling C, Guardado J, et al. Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. Scand J Work Environ Health. 2007;33:293–303.PubMedGoogle Scholar
  35. 35.
    Rudant J, Menegaux F, Leverger G, et al. Household exposure to pesticides and risk of childhood hematopoietic malignancies: The ESCALE study (SFCE). Environ Health Perspect. 2007;115:1787–1793.PubMedCrossRefGoogle Scholar
  36. 36.
    Abadi-Korek I, Stark B, Zaizov R, et al. Parental occupational exposure and the risk of acute lymphoblastic leukemia in offspring in Israel. J Occup Environ Med. 2006;48:165–174.PubMedCrossRefGoogle Scholar
  37. 37.
    Pearce MS, Hammal DM, Dorak MT, et al. Paternal occupational exposure to pesticides or herbicides as risk factors for cancer in children and young adults: a case-control study from the North of England. Arch Environ Occup Health. 2006;61:138–144.PubMedCrossRefGoogle Scholar
  38. 38.
    Walker KM, Carozza S, Cooper S, et al. Childhood cancer in Texas counties with moderate to intense agricultural activity. J Agric Saf Health. 2007;13:9–24.PubMedGoogle Scholar
  39. 39.
    Shu XO, Perentesis JP, Wen W, et al. Parental exposure to medications and hydrocarbons and ras mutations in children with acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev. 2004;13:1230–1235.PubMedGoogle Scholar
  40. 40.
    Infante-Rivard C, Siemiatycki J, Lakhani R, et al. Maternal exposure to occupational solvents and childhood leukemia. Environ Health Perspect. 2005;113:787–792.PubMedCrossRefGoogle Scholar
  41. 41.
    Sung TI, Wang JD, Chen PC. Increased risk of cancer in the offspring of female electronics workers. Reprod Toxicol. 2008;25:115–119.PubMedCrossRefGoogle Scholar
  42. 42.
    Cantor KP, Silberman W. Mortality among aerial pesticide applicators and flight instructors follow-up from 1965–1988. Am J Ind Med. 1999;36:239–247.PubMedCrossRefGoogle Scholar
  43. 43.
    Costantini AS, Miligi L, Kriebel D, et al. A multicenter case-control study in Italy on hematolymphopoietic neoplasms and occupation. Epidemiology. 2001;12:78–87.PubMedCrossRefGoogle Scholar
  44. 44.
    Miligi L, Costantini AS, Bolejack V, et al. Non-Hodgkin’s lymphoma, leukemia, and exposures in agriculture: results from the Italian multicenter case-control study. Am J Ind Med. 2003;44:627–636.PubMedCrossRefGoogle Scholar
  45. 45.
    Miligi L, Costantini AS, Veraldi A, et al. Cancer and pesticides: an overview and some results of the Italian multicenter case-control study on hematolymphopoietic malignancies. Ann N Y Acad Sci. 2006;1076:366–377.PubMedCrossRefGoogle Scholar
  46. 46.
    Mills PK, Yang R, Riordan D. Lymphohematopoietic cancers in the United Farm Workers of America (UFW), 1988–2001. Cancer Causes Control. 2005;16:823–830.PubMedCrossRefGoogle Scholar
  47. 47.
    De Roos AJ, Hartge P, Lubin JH, et al. Persistent organochlorine chemicals in plasma and risk of non-Hodgkin’s lymphoma. Cancer Res. 2005;65:11214–11226.PubMedCrossRefGoogle Scholar
  48. 48.
    Colt JS, Severson RK, Lubin J, et al. Organochlorines in carpet dust and non-Hodgkin lymphoma. Epidemiology. 2005;16:516–525.PubMedCrossRefGoogle Scholar
  49. 49.
    Colt JS, Davis S, Severson RK, et al. Residential insecticide use and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev. 2006;15:251–257.PubMedCrossRefGoogle Scholar
  50. 50.
    Chiu BC, Dave BJ, Blair A, et al. Agricultural pesticide use and risk of t(14;18) – defined subtypes of non-Hodgkin lymphoma. Blood. 2006;108:1363–1369.PubMedCrossRefGoogle Scholar
  51. 51.
    van Balen E, Font R, Cavalle N, et al. Exposure to non-arsenic pesticides is associated with lymphoma among farmers in Spain. Occup Environ Med. 2006;63:663–668.PubMedCrossRefGoogle Scholar
  52. 52.
    Rafnsson V. Risk of non-Hodgkin’s lymphoma and exposure to hexachlorocyclohexane, a nested case-control study. Eur J Cancer. 2006;42:2781–2785.PubMedCrossRefGoogle Scholar
  53. 53.
    Spinelli JJ, Ng CH, Weber JP, et al. Organochlorines and risk of non-Hodgkin lymphoma. Int J Cancer. 2007;121:2767–2775.PubMedCrossRefGoogle Scholar
  54. 54.
    Hardell L, Eriksson M, Nordstrom M. Exposure to pesticides as risk factor for non-Hodgkin’s lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies. Leuk Lymphoma. 2002;43:1043–1049.PubMedGoogle Scholar
  55. 55.
    Merhi M, Raynal H, Cahuzac E, et al. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. Cancer Causes Control. 2007;18:1209–1226.PubMedCrossRefGoogle Scholar
  56. 56.
    Cocco P, Brennan P, Ibba A, et al. Plasma polychlorobiphenyl and organochlorine pesticide level and risk of major lymphoma subtypes. Occup Environ Med. 2008;65:132–140.PubMedCrossRefGoogle Scholar
  57. 57.
    Guenel P, Imbernon E, Chevalier A, et al. Leukemia in relation to occupational exposures to benzene and other agents: a case-control study nested in a cohort of gas and electric utility workers. Am J Ind Med. 2002;42:87–97.PubMedCrossRefGoogle Scholar
  58. 58.
    Fritschi L, Benke G, Hughes AM, et al. Risk of non-Hodgkin lymphoma associated with occupational exposure to solvents, metals, organic dusts and PCBs (Australia). Cancer Causes Control. 2005;16:599–607.PubMedCrossRefGoogle Scholar
  59. 59.
    Kato I, Koenig KL, Watanabe-Meserve H, et al. Personal and occupational exposure to organic solvents and risk of non-Hodgkin’s lymphoma (NHL) in women (United States). Cancer Causes Control. 2005;16:1215–1224.CrossRefGoogle Scholar
  60. 60.
    Miligi L, Costantini AS, Benvenuti A, et al. Occupational exposure to solvents and the risk of lymphomas. Epidemiology. 2006;17:552–561.PubMedCrossRefGoogle Scholar
  61. 61.
    Vineis P, Miligi L, Costantini AS. Exposure to solvents and risk of non-Hodgkin lymphoma: clues on putative mechanisms. Cancer Epidemiol Biomarkers Prev. 2007;16:381–384.PubMedCrossRefGoogle Scholar
  62. 62.
    Seidler A, Mohner M, Berger J, et al. Solvent exposure and malignant lymphoma: a population-based case-control study in Germany. J Occup Med Toxicol. 2007;2:2.PubMedCrossRefGoogle Scholar
  63. 63.
    Nordstrom M, Hardell L, Magnuson A, et al. Occupational exposures, animal exposure and smoking as risk factors for hairy cell leukaemia evaluated in a case-control study. Br J Cancer. 1998;77:2048–2052.PubMedCrossRefGoogle Scholar
  64. 64.
    Lazarov D, Waldron HA, Pejin D. Acute myeloid leukaemia and exposure to organic solvents – a case-control study. Eur J Epidemiol. 2000;16:295–301.PubMedCrossRefGoogle Scholar
  65. 65.
    Blair A, Zheng T, Linos A, et al. Occupation and leukemia: a population-based case-control study in Iowa and Minnesota. Am J Ind Med. 2001;40:3–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Li K, Yu S. Leukemia mortality and occupational exposure to rubber: a nested case-control study. Int J Hyg Environ Health. 2002;204:317–321.PubMedCrossRefGoogle Scholar
  67. 67.
    Mandel JH, Kelsh MA, Mink PJ, et al. Occupational trichloroethylene exposure and non-Hodgkin’s lymphoma: a meta-analysis and review. Occup Environ Med. 2006;63:597–607.PubMedCrossRefGoogle Scholar
  68. 68.
    Alexander DD, Mink PJ, Mandel JH, et al. A meta-analysis of occupational trichloroethylene exposure and multiple myeloma or leukaemia. Occup Med (Lond). 2006;56:485–493.CrossRefGoogle Scholar
  69. 69.
    Colt JS, Hartge P, Davis S, et al. Hobbies with solvent exposure and risk of non-Hodgkin lymphoma. Cancer Causes Control. 2007;18:385–390.PubMedCrossRefGoogle Scholar
  70. 70.
    Menegaux F, Ripert M, Hemon D, et al. Maternal alcohol and coffee drinking, parental smoking and childhood leukaemia: a French population-based case-control study. Paediatr Perinat Epidemiol. 2007;21:293–299.PubMedCrossRefGoogle Scholar
  71. 71.
    Clavel J, Bellec S, Rebouissou S, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev. 2005;14:531–540.PubMedCrossRefGoogle Scholar
  72. 72.
    Mucci LA, Granath F, Cnattingius S. Maternal smoking and childhood leukemia and lymphoma risk among 1,440,542 Swedish children. Cancer Epidemiol Biomarkers Prev. 2004;13:1528–1533.PubMedGoogle Scholar
  73. 73.
    Chang JS, Selvin S, Metayer C, et al. Parental smoking and the risk of childhood leukemia. Am J Epidemiol. 2006;163:1091–1100.PubMedCrossRefGoogle Scholar
  74. 74.
    Pang D, McNally R, Birch JM. Parental smoking and childhood cancer: results from the United Kingdom Childhood Cancer Study. Br J Cancer. 2003;88:373–381.PubMedCrossRefGoogle Scholar
  75. 75.
    Thomas X, Chelghoum Y. Cigarette smoking and acute leukemia. Leuk Lymphoma. 2004;45:1103–1109.PubMedCrossRefGoogle Scholar
  76. 76.
    Brownson RC, Novotny TE, Perry MC. Cigarette smoking and acute leukemia. A meta-analysis. Arch Intern Med. 1993;153:469–475.PubMedCrossRefGoogle Scholar
  77. 77.
    Kane EV, Roman E, Cartwright R, et al. Tobacco and the risk of acute leukaemia in adults. Br J Cancer. 1999;81:1228–1233.PubMedCrossRefGoogle Scholar
  78. 78.
    Pasqualetti P, Festuccia V, Acitelli P, et al. Tobacco smoking and risk of haematological malignancies in adults: a case-control study. Br J Haematol. 1997;97:659–662.PubMedCrossRefGoogle Scholar
  79. 79.
    Jee SH, Samet JM, Ohrr H, et al. Smoking and cancer risk in Korean men and women. Cancer Causes Control. 2004;15:341–348.PubMedCrossRefGoogle Scholar
  80. 80.
    Batty GD, Kivimaki M, Gray L, et al. Cigarette smoking and site-specific cancer mortality: testing uncertain associations using extended follow-up of the original Whitehall study. Ann Oncol. 2008;19:996–1002.PubMedCrossRefGoogle Scholar
  81. 81.
    Kasim K, Levallois P, Abdous B, et al. Lifestyle factors and risk of adult leukemia in Canada. Cancer Causes Control. 2005;16:489–500.PubMedCrossRefGoogle Scholar
  82. 82.
    Fernberg P, Odenbro A, Bellocco R, et al. Tobacco use, body mass index, and the risk of leukemia and multiple myeloma: a nationwide cohort study in Sweden. Cancer Res. 2007;67:5983–5986.PubMedCrossRefGoogle Scholar
  83. 83.
    Xu X, Talbott EO, Zborowski JV, et al. Cigarette smoking and the risk of adult leukemia: results from the Three Mile Island cohort study. Arch Environ Occup Health. 2007;62:131–137.PubMedCrossRefGoogle Scholar
  84. 84.
    Richardson DB, Terschuren C, Pohlabeln H, et al. Temporal patterns of association between cigarette smoking and leukemia risk. Cancer Causes Control. 2008;19:43–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Briggs NC, Hall HI, Brann EA, et al. Cigarette smoking and risk of Hodgkin’s disease: a population-based case-control study. Am J Epidemiol. 2002;156:1011–1020.PubMedCrossRefGoogle Scholar
  86. 86.
    Glaser SL, Keegan TH, Clarke CA, et al. Smoking and Hodgkin lymphoma in women United States. Cancer Causes Control. 2004;15:387–397.PubMedCrossRefGoogle Scholar
  87. 87.
    Besson H, Brennan P, Becker N, et al. Tobacco smoking, alcohol drinking and Hodgkin’s lymphoma: a European multi-centre case-control study (EPILYMPH). Br J Cancer. 2006;95:378–384.PubMedCrossRefGoogle Scholar
  88. 88.
    Nieters A, Deeg E, Becker N. Tobacco and alcohol consumption and risk of lymphoma: results of a population-based case-control study in Germany. Int J Cancer. 2006;118:422–430.PubMedCrossRefGoogle Scholar
  89. 89.
    Lim U, Morton LM, Subar AF, et al. Alcohol, smoking, and body size in relation to incident Hodgkin’s and non-Hodgkin’s lymphoma risk. Am J Epidemiol. 2007;166:697–708.PubMedCrossRefGoogle Scholar
  90. 90.
    Willett EV, O’Connor S, Smith AG, et al. Does smoking or alcohol modify the risk of Epstein-Barr virus-positive or -negative Hodgkin lymphoma? Epidemiology. 2007;18:130–136.PubMedCrossRefGoogle Scholar
  91. 91.
    Hjalgrim H, Ekstron-Smedby K, Rostgaard K, et al. Cigarette smoking and risk of Hodgkin lymphoma: a population-based case-control study. Cancer Epidemiol Biomarkers Prev. 2007;16:1561–1566.PubMedCrossRefGoogle Scholar
  92. 92.
    Nieters A, Rohrmann S, Becker N, et al. Smoking and lymphoma risk in the European prospective investigation into cancer and nutrition. Am J Epidemiol. 2008;167:1081–1089.PubMedCrossRefGoogle Scholar
  93. 93.
    Gallus S, Giordano L, Altieri A, et al. Cigarette smoking and risk of Hodgkin’s disease. Eur J Cancer Prev. 2004;13:143–144.PubMedCrossRefGoogle Scholar
  94. 94.
    Peach HG, Barnett NE. Critical review of epidemiological studies of the association between smoking and non-Hodgkin’s lymphoma. Hematol Oncol. 2001;19:67–80.PubMedCrossRefGoogle Scholar
  95. 95.
    Besson H, Renaudier P, Merrill RM, et al. Smoking and non-Hodgkin’s lymphoma: a case-control study in the Rhone Alpes region of France. Cancer Causes Control. 2003;14:381–389.PubMedCrossRefGoogle Scholar
  96. 96.
    Morton LM, Holford TR, Leaderer B, et al. Cigarette smoking and risk of non-Hodgkin lymphoma subtypes among women. Br J Cancer. 2003;89:2087–2092.PubMedCrossRefGoogle Scholar
  97. 97.
    Stagnaro E, Tumino R, Parodi S, et al. Non-Hodgkin’s lymphoma and type of tobacco smoke. Cancer Epidemiol Biomarkers Prev. 2004;13:431–437.PubMedGoogle Scholar
  98. 98.
    Talamini R, Polesel J, Montella M, et al. Smoking and non-Hodgkin lymphoma: case-control study in Italy. Int J Cancer. 2005;115:606–610.PubMedCrossRefGoogle Scholar
  99. 99.
    Morton LM, Hartge P, Holford TR, et al. Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the International Lymphoma Epidemiology Consortium (interlymph). Cancer Epidemiol Biomarkers Prev. 2005;14:925–933.PubMedCrossRefGoogle Scholar
  100. 100.
    Schollkopf C, Smedby KE, Hjalgrim H, et al. Cigarette smoking and risk of non-Hodgkin’s lymphoma – a population-based case-control study. Cancer Epidemiol Biomarkers Prev. 2005;14:1791–1796.PubMedCrossRefGoogle Scholar
  101. 101.
    Chiu BC, Dave BJ, Blair A, et al. Cigarette smoking, familial hematopoietic cancer, hair dye use, and risk of t(14;18)-defined subtypes of non-Hodgkin’s lymphoma. Am J Epidemiol. 2007;165:652–659.PubMedCrossRefGoogle Scholar
  102. 102.
    Willett EV, Smith AG, Dovey GJ, et al. Tobacco and alcohol consumption and the risk of non-Hodgkin lymphoma. Cancer Causes Control. 2004;15:771–780.PubMedCrossRefGoogle Scholar
  103. 103.
    Bracci PM, Holly EA. Tobacco use and non-Hodgkin lymphoma: results from a population-based case-control study in the San Francisco Bay Area, California. Cancer Causes Control. 2005;16:333–346.PubMedCrossRefGoogle Scholar
  104. 104.
    Besson H, Brennan P, Becker N, et al. Tobacco smoking, alcohol drinking and non-Hodgkin’s lymphoma: a European multicenter case-control study (Epilymph). Int J Cancer. 2006;119:901–908.PubMedCrossRefGoogle Scholar
  105. 105.
    Casey R, Piazzon-Fevre K, Raverdy N, et al. Case-control study of lymphoid neoplasm in three French areas: description, alcohol and tobacco consumption. Eur J Cancer Prev. 2007;16:142–150.PubMedCrossRefGoogle Scholar
  106. 106.
    Morales Suarez-Varela MM, Olsen J, Kaerlev L, et al. Are alcohol intake and smoking associated with mycosis fungoides? A European multicentre case – control study. Eur J Cancer. 2001;37:392–397.PubMedCrossRefGoogle Scholar
  107. 107.
    Infante-Rivard C, Krajinovic M, Labuda D, et al. Childhood acute lymphoblastic leukemia associated with parental alcohol consumption and polymorphisms of carcinogen-metabolizing genes. Epidemiology. 2002;13:277–281.PubMedCrossRefGoogle Scholar
  108. 108.
    Macarthur AC, McBride ML, Spinelli JJ, et al. Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the cross-Canada childhood leukemia study. Cancer Causes Control. 2008;19:283–295.PubMedCrossRefGoogle Scholar
  109. 109.
    Rauscher GH, Shore D, Sandler DP. Alcohol intake and incidence of de novo adult acute leukemia. Leuk Res. 2004;28:1263–1265.PubMedCrossRefGoogle Scholar
  110. 110.
    Pogoda JM, Nichols PW, Preston-Martin S. Alcohol consumption and risk of adult-onset acute myeloid leukemia: results from a Los Angeles County case-control study. Leuk Res. 2004;28:927–931.PubMedCrossRefGoogle Scholar
  111. 111.
    Matsuo K, Hamajima N, Hirose K, et al. Alcohol, smoking, and dietary status and susceptibility to malignant lymphoma in Japan: results of a hospital-based case-control study at Aichi Cancer Center. Jpn J Cancer Res. 2001;92:1011–1017.PubMedGoogle Scholar
  112. 112.
    Gorini G, Stagnaro E, Fontana V, et al. Alcohol consumption and risk of Hodgkin’s lymphoma and multiple myeloma: a muticentre case-control study. Ann Oncol. 2007;18:143–148.PubMedCrossRefGoogle Scholar
  113. 113.
    Morton LM, Zheng T, Holford TR, et al. Alcohol consumption and risk of non-Hodgkin lymphoma: a pooled analysis. Lancet Oncol. 2005;6:469–476.PubMedCrossRefGoogle Scholar
  114. 114.
    Briggs NC, Levine RS, Bobo LD, et al. Wine drinking and risk of non-Hodgkin’s lymphoma among men in the United States: a population-based case-control study. Am J Epidemiol. 2002;156:454–462.PubMedCrossRefGoogle Scholar
  115. 115.
    De Stefani E, Fierro L, Barrios E, et al. Tobacco, alcohol, diet and risk of non-Hodgkin’s lymphoma: a case-control study in Uruguay. Leuk Res. 1998;22:445–452.PubMedCrossRefGoogle Scholar
  116. 116.
    Chiu BC, Weisenburger DD, Cantor KP, et al. Alcohol consumption, family history of hematolymphoproliferative cancer, and the risk of non-Hodgkin’s lymphoma in men. Ann Epidemiol. 2002;12:309–315.PubMedCrossRefGoogle Scholar
  117. 117.
    Spector LG, Xie Y, Robison LL, et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitors hypothesis: a report from the children’s oncology group. Cancer Epidemiol Biomarkers Prev. 2005;14:651–655.PubMedCrossRefGoogle Scholar
  118. 118.
    Petridou E, Ntouvelis E, Dessypris N, et al. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomarkers Prev. 2005;14:1935–1939.PubMedCrossRefGoogle Scholar
  119. 119.
    Blair CK, Roesler M, Xie Y, et al. Vitamin supplement use among children with Down’s syndrome and risk of leukemia: a Children’s Oncology Group (COG) study. Paediatr Perinat Epidemiol. 2008;22:288–295.PubMedCrossRefGoogle Scholar
  120. 120.
    Fritschi L, Ambrosini GL, Kliewer EV, et al. Dietary fish intake and risk of leukaemia, multiple myeloma, and non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2004;13:532–537.PubMedGoogle Scholar
  121. 121.
    Li Y, Moysich KB, Baer MR, et al. Intakes of selected food groups and beverages and adult acute myeloid leukemia. Leuk Res. 2006;30:1507–1515.PubMedCrossRefGoogle Scholar
  122. 122.
    Polesel J, Dal Maso L, La Vecchia C, et al. Dietary folate, alcohol consumption, and risk of non-Hodgkin lymphoma. Nutr Cancer. 2007;57:146–150.PubMedGoogle Scholar
  123. 123.
    Vinceti M, Fantuzzi G, Monici L, et al. A retrospective cohort study of trihalomethane exposure through drinking water and cancer mortality in northern Italy. Sci Total Environ. 2004;330:47–53.PubMedCrossRefGoogle Scholar
  124. 124.
    Kasim K, Levallois P, Johnson KC, et al. Chlorination disinfection by-products in drinking water and the risk of adult leukemia in Canada. Am J Epidemiol. 2006;163:116–126.PubMedCrossRefGoogle Scholar
  125. 125.
    McNally RJ, Eden TO. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol. 2004;127:243–263.PubMedCrossRefGoogle Scholar
  126. 126.
    Jarrett RF. Risk factors for Hodgkin’s lymphoma by EBV status and significance of detection of EBV genomes in serum of patients with EBV-associated Hodgkin’s lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S27–S32.PubMedCrossRefGoogle Scholar
  127. 127.
    Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–768.PubMedCrossRefGoogle Scholar
  128. 128.
    Pearce MS, Cotterill SJ, Parker L. Fathers’ occupational contacts and risk of childhood leukemia and non-Hodgkin lymphoma. Epidemiology. 2004;15:352–356.PubMedCrossRefGoogle Scholar
  129. 129.
    Kinlen L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish New Town with nuclear reprocessing sites in Britain. Lancet. 1988;2:1323–1327.PubMedCrossRefGoogle Scholar
  130. 130.
    Kinlen L. Epidemiological evidence for an infective basis in childhood leukemia. Br J Cancer. 1995;71:1–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Gilham C, Peto J, Simpson J, et al. Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from UK case-control study. BMJ. 2005;330:1294.PubMedCrossRefGoogle Scholar
  132. 132.
    Greaves MF. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia. 1988;2:120–125.PubMedGoogle Scholar
  133. 133.
    Fear NT, Simpson J, Roman E, et al. Childhood cancer and social contact: the role of paternal occupation (United Kingdom). Cancer Causes Control. 2005;16:1091–1097.PubMedCrossRefGoogle Scholar
  134. 134.
    Roman E, Simpson J, Ansell P, et al. Childhood acute lymphoblastic leukemia and infections in the first year of life: a report from the United Kingdom Childhood Cancer Study. Am J Epidemiol. 2007;165:496–504.PubMedCrossRefGoogle Scholar
  135. 135.
    Rosenbaum PF, Buck GM, Brecher ML. Allergy and infectious disease histories and the risk of childhood acute lymphoblastic leukaemia. Paediatr Perinat Epidemiol. 2005;19:152–164.PubMedCrossRefGoogle Scholar
  136. 136.
    Lehtinen M, Ogmundsdottir HM, Bloigu A, et al. Associations between three types of maternal bacterial infection and risk of leukaemia in the offspring. Am J Epidemiol. 2005;162:662–667.PubMedCrossRefGoogle Scholar
  137. 137.
    Tedeschi R, Bloigu A, Ogmundsdottir HM, et al. Activation of maternal Epstein-Barr virus infection and risk of acute leukemia in the offspring. Am J Epidemiol. 2007;165:134–137.PubMedCrossRefGoogle Scholar
  138. 138.
    Gustafsson B, Huang W, Bogdanovic G, et al. Adenovirus DNA is detected at increased frequency in Guthrie cards from children who develop acute lymphoblastic leukaemia. Br J Cancer. 2007;97:992–994.PubMedGoogle Scholar
  139. 139.
    Isa A, Priftakis P, Broliden K, et al. Human parvovirus B19 DNA is not detected in Guthrie cards from children who have developed acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42:357–360.PubMedCrossRefGoogle Scholar
  140. 140.
    Kannagi M, Ohashi T, Harashima N, et al. Immunological risks of adult T-cell leukemia at primary HTLV-I infection. Trends Microbiol. 2004;12:346–352.PubMedCrossRefGoogle Scholar
  141. 141.
    Grulich AE, van Leeuwen MT, Falster MO, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370:59–67.PubMedCrossRefGoogle Scholar
  142. 142.
    Grulich AE, Vajdic CM. The epidemiology of non-Hodgkin lymphoma. Pathology. 2005;37:409–419.PubMedCrossRefGoogle Scholar
  143. 143.
    Alexander DD, Mink PJ, Adami HO, et al. The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer. 2007;120(Suppl 12):1–39.PubMedCrossRefGoogle Scholar
  144. 144.
    Serraino D, Piselli P, Busnach G, et al. Risk of cancer following immunosuppression in organ transplant recipients and in HIV-positive individuals in southern Europe. Eur J Cancer. 2007;43:2117–2123.PubMedCrossRefGoogle Scholar
  145. 145.
    Vineis P, Miligi L, Crosignani P, et al. Delayed infection, late tonsillectomy or adenoidectomy and adult leukaemia: a case-control study. Br J Cancer. 2003;88:47–49.PubMedCrossRefGoogle Scholar
  146. 146.
    Vineis P, Crosignani P, Sacerdote C, et al. Haematopoietic cancer and medical history: a multicentre case control study. J Epidemiol Community Health. 2000;54:431–436.PubMedCrossRefGoogle Scholar
  147. 147.
    de Sanjose S, Bosch R, Schouten T, et al. Epstein-Barr virus infection and risk of lymphoma: immunoblot analysis of antibody responses against EBV-related proteins in a large series of lymphoma subjects and matched controls. Int J Cancer. 2007;121:1806–1812.PubMedCrossRefGoogle Scholar
  148. 148.
    de Sanjose S, Goedert JJ, Marshall V, et al. Risk of malignant lymphoma associated with human herpesvirus-8: a case-control study in Spain. Br J Cancer. 2004;90:2145–2148.PubMedGoogle Scholar
  149. 149.
    Marcucci F, Mele A, Spada E, et al. High prevalence of hepatitis B virus infection in B-cell non-Hodgkin’s lymphoma. Haematologica. 2006;91:554–557.PubMedGoogle Scholar
  150. 150.
    de Sanjose S, Benavente Y, Vajdic CM, et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol. 2008;6:451–458.PubMedCrossRefGoogle Scholar
  151. 151.
    Duberg AS, Nordstrom M, Torner A, et al. Non-Hodgkin’s lymphoma and other nonhepatic malignancies in Swedish patients with hepatitis C virus infection. Hepatology. 2005;41:652–659.PubMedCrossRefGoogle Scholar
  152. 152.
    Bianco E, Marcucci F, Mele A, et al. Prevalence of hepatitis C virus infection in lymphoproliferative diseases other than B-cell non-Hodgkin’s lymphoma, and in myeloproliferative diseases: an Italian Multi-Center case-control study. Haematologica. 2004;89:70–76.PubMedGoogle Scholar
  153. 153.
    Murashige N, Kami M, Iwata H, et al. No relationship between hepatitis C infection and risk of myeloid malignancy. Haematologica. 2005;90:572–574.PubMedGoogle Scholar
  154. 154.
    Sonmez M, Bektas O, Yilmaz M, et al. The relation of lymphoma and hepatitis B virus/hepatitis C virus infections in the region of East Black Sea, Turkey. Tumori. 2007;93:536–539.PubMedGoogle Scholar
  155. 155.
    Berrington de Gonzalez A, Urban MI, Sitas F, et al. Antibodies against six human herpesviruses in relation to seven cancers in black South Africans: a case control study. Infect Agent Cancer. 2006;1:2.PubMedCrossRefGoogle Scholar
  156. 156.
    Ioachim HL. Neoplasms associated with immune deficiencies. Pathol Annu. 1987;22:177–222.PubMedGoogle Scholar
  157. 157.
    Kinlen LJ, Sheil AG, Peto J, et al. Collaborative United Kingdom-Australasian study of cancer in patients treated with immunosuppressive drugs. Br Med J. 1979;2:1461–1466.PubMedCrossRefGoogle Scholar
  158. 158.
    Hake CR, Graubert TA, Fenske TS. Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients? Bone Marrow Transplant. 2007;39:59–70.PubMedCrossRefGoogle Scholar
  159. 159.
    Metayer C, Curtis RE, Vose J, et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: a multicenter case-control study. Blood. 2003;101:2015–2023.PubMedCrossRefGoogle Scholar
  160. 160.
    Aberg F, Pukkala E, Hockerstedt K, et al. Risk of malignant neoplasms after liver transplantation: a population-based study. Liver Transpl. 2008;14:1428–1436.PubMedCrossRefGoogle Scholar
  161. 161.
    Kinlen LJ. Incidence of cancer in rheumatoid arthritis and other disorders after immunosuppressive treatment. Am J Med. 1985;78(Suppl 1A):44–49.PubMedCrossRefGoogle Scholar
  162. 162.
    Symmons DP. Neoplasms of the immune system in rheumatoid arthritis. Am J Med. 1985;78(Suppl 1A):22–28.PubMedCrossRefGoogle Scholar
  163. 163.
    Kaiser R. Incidence of lymphoma in patients with rheumatoid arthritis: a systematic review of the literature. Clin Lymphoma Myeloma. 2008;8:87–93.PubMedCrossRefGoogle Scholar
  164. 164.
    Pedersen-Bjergaard J, Pedersen M, Roulston D, et al. Different genetic pathways in leukemogenesis for patients presenting with therapy related myelodysplasia and therapy-related acute myeloid leukemia. Blood. 1995;86:3542–3552.Google Scholar
  165. 165.
    Godley LA, Larson RA. Therapy-related myeloid leukemia. Semin Oncol. 2008;35:418–429.PubMedCrossRefGoogle Scholar
  166. 166.
    Travis LB, Holowaty EJ, Bergfeldt K, et al. Risk of leukemia after platinum-based chemotherapy for ovarian cancer. N Engl J Med. 1999;340:351–357.PubMedCrossRefGoogle Scholar
  167. 167.
    Le Deley MC, Leblanc T, Shamsaldin A, et al. Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the Societe Francaise d’Oncologie Pediatrique. J Clin Oncol. 2003;21:1074–1081.PubMedCrossRefGoogle Scholar
  168. 168.
    Le Deley MC, Suzan F, Cutuli B, et al. Antrhacyclines, mitoxantrone, radiotherapy, and granulocyte colony-stimulating factor: risk factors for leukemia and myelodysplastic syndrome after breast cancer. J Clin Oncol. 2007;25:292–300.PubMedCrossRefGoogle Scholar
  169. 169.
    Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25:493–500.PubMedCrossRefGoogle Scholar
  170. 170.
    Brusamolino E, Anselmo AP, Klersy C, et al. The risk of acute leukemia in patients treated for Hodgkin’s disease is significantly higher after combined modality programs than after chemotherapy alone and is correlated with the extent of radiotherapy and type and duration of chemotherapy: a case-control study. Haematologica. 1998;83:812–823.PubMedGoogle Scholar
  171. 171.
    Krishnan B, Morgan GJ. Non-Hodgkin lymphoma secondary to cancer chemotherapy. Cancer Epidemiol Biomarkers Prev. 2007;16:377–380.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Richard J. Q. McNally
    • 1
  1. 1.Department of Health and SocietyNewcastle University, Newcastle upon TyneEnglandUK

Personalised recommendations