Advertisement

Molecular Pathology of Infectious Lymphadenitides

  • Kristin Fiebelkorn
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 4)

Abstract

In its role in the presentation of foreign antigens to the immune system, the lymph node is frequently involved in both local and systemic infections. This may manifest as lymphadenopathy with reactive changes or localized infectious lymphadenitis, with or without necrosis and granulomatous inflammation, depending on the infectious agent. The vast majority of these infections are routinely diagnosed using nonmolecular methods, including culture, serology, and antigen testing. However, in some cases, other methods may be unavailable, or the presentation and appearance may be atypical, and direct confirmation of the infecting agent by in situ hybridization (ISH) or amplified nucleic acid detection is desired in the lymph node tissue itself.

Keywords

Internal Transcribe Spacer Polymerase Chain Reaction Assay FFPE Tissue Nest Polymerase Chain Reaction Assay Kimura Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Iochim HL, Medeiros LJ, eds. Iochim’s Lymph Node Pathology. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.Google Scholar
  2. 2.
    Mandell GJ, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 6th ed. Philadelphia, PA: Churchill Livingstone; 2004.Google Scholar
  3. 3.
    Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. Manual of Clinical Microbiology. 9th ed. Washington, DC: American Society for Microbiology; 2007.Google Scholar
  4. 4.
    Giladi M, Avidor B, Kletter Y, et al. Cat scratch disease: the rare role of Afipia felis. J Clin Microbiol. 1998;36(9):2499–2502.PubMedGoogle Scholar
  5. 5.
    Agan BK, Dolan MJ. Laboratory diagnosis of Bartonella infections. Clin Lab Med. 2002;22:937–962.PubMedGoogle Scholar
  6. 6.
    Qian X, Jin L, Hayden RT, Macon WR, Lloyd RV. Diagnosis of cat scratch disease with Bartonella henselae infection in formalin-fixed paraffin-embedded tissues by two different PCR assays. Diagn Mol Pathol. 2005;14(3):146–151.PubMedGoogle Scholar
  7. 7.
    Rolain JM, Lepidi H, Zanaret M, et al. Lymph node biopsy specimens and diagnosis of cat-scratch disease. Emerg Infect Dis. 2006;12(9):1338–1344.PubMedGoogle Scholar
  8. 8.
    Relman DA, Loutit JS, Schmidt TM, Falkow S, Tompkins LS. The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N Engl J Med. 1990;323:1573–1580.PubMedGoogle Scholar
  9. 9.
    Waldvogel K, Regnery RL, Anderson BE, Caduff R, Caduff J, Nadal D. Disseminated cat-scratch disease: detection of Rochalimaea henselae in affected tissue. Eur J Pediatr. 1994;153:23–27.PubMedGoogle Scholar
  10. 10.
    Bergmans AM, Groothedde JW, Schellekens JF, van Embden JD, Ossewaarde JM, Schouls LM. Etiology of cat scratch disease: comparison of polymerase chain reaction detection of Bartonella (formerly Rochalimaea) and Afipia felis DNA with serology and skin tests. J Infect Dis. 1995;171(4):916–923.PubMedGoogle Scholar
  11. 11.
    Avidor B, Kletter Y, Abulafia S, Golan Y, Ephros M, Giladi M. Molecular diagnosis of cat scratch disease: a two step approach. J Clin Microbiol. 1997;35(8):1924–1930.PubMedGoogle Scholar
  12. 12.
    Schlüpen EM, Schirren CG, Hoegl L, Schaller M, Volkenandt M. Molecular diagnosis of deep nodular bacillary angiomatosis and monitoring of therapeutic success. Br J Dermatol. 1997;136:747–751.PubMedGoogle Scholar
  13. 13.
    Matar G, Koehler JE, Malcolm G, et al. Identification of Bartonella species directly in clinical specimens by PCR-restriction fragment length polymorphism analysis of a 16S rRNA gene fragment. J Clin Microbiol. 1999;37(12):4045–4047.PubMedGoogle Scholar
  14. 14.
    Avidor B, Varon M, Marmor S, et al. DNA amplification for the diagnosis of cat-scratch disease in small-quantity clinical specimens. Am J Clin Pathol. 2001;115:900–909.PubMedGoogle Scholar
  15. 15.
    Maggi RG, Breitschwerdt EB. Potential limitations of the 16S–23S rRNA intergenic region for molecular detection of Bartonella species. J Clin Microbiol. 2005;43(3):1171–1176.PubMedGoogle Scholar
  16. 16.
    Dillon B, Iredell J, Breitschwerdt EB, Maggi RG. Potential limitations of the 16S–23S rRNA intergenic region for molecular detection of Bartonella species [comment]. J Clin Microbiol. 2005;43(9):4921–4922.PubMedGoogle Scholar
  17. 17.
    Anderson A, Sims K, Regnery R, et al. Detection of Rochalimaea henselae DNA in specimens from cat scratch disease patients by PCR. J Clin Microbiol. 1994;32(4):942–948.PubMedGoogle Scholar
  18. 18.
    Mouritsen CL, Litwin CM, Maiese RL, Segal SM, Segal GH. Rapid polymerase chain reaction-based detection of the causative agent of cat scratch disease (Bartonella henselae) in formalin-fixed, paraffin-embedded samples. Hum Pathol. 1997;28(7):820–826.PubMedGoogle Scholar
  19. 19.
    Hansmann Y, DeMartino S, Piemont Y, et al. Diagnosis of cat scratch disease with detection of Bartonella henselae by PCR: a study of patients with lymph node enlargement. J Clin Microbiol. 2005;43(8):3800–3806.PubMedGoogle Scholar
  20. 20.
    Norman AF, Regnery R, Jameson P, Greene C, Krause DC. Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. J Clin Microbiol. 1995;33(7):1797–1803.PubMedGoogle Scholar
  21. 21.
    Margolis B, Kuzu I, Herrmann M, Raible MD, His E, Alkan S. Rapid polymerase chain reaction-based confirmation of cat scratch disease and Bartonella henselae infection. Arch Pathol Lab Med. 2003;127:706–710.PubMedGoogle Scholar
  22. 22.
    Sander A, Penno S. Semiquantitative species-specific detection of Bartonella henselae and Bartonella quintana by PCR-enzyme immunoassay. J Clin Microbiol. 1999;37(10):3097–3101.PubMedGoogle Scholar
  23. 23.
    Ciervo A, Ciceroni L. Rapid detection and differentiation of Bartonella spp. by a single-run real-time PCR. Mol Cell Probes. 2004;18:307–312.PubMedGoogle Scholar
  24. 24.
    Ciervo A, Mastroianni CM, Ajassa C, Pinto A, Ciceroni L. Rapid identification of bartonella henselae by real-time polymerase chain reaction in a patient with cat scratch disease. Diagn Microbiol Infect Dis. 2005;53:75–77.PubMedGoogle Scholar
  25. 25.
    Zeaiter Z, Fournier PE, Greub G, Raoult D. Diagnosis of Bartonella endocarditis by a real-time nested PCR assay using serum. J Clin Microbiol. 2003;41(3):919–925.PubMedGoogle Scholar
  26. 26.
    Bastien P, Procop GW, Reischl U. Quantitative real-time PCR is not more sensitive than “conventional” PCR. J Clin Microbiol. 2008;46(6):1897–1900.PubMedGoogle Scholar
  27. 27.
    Hercik K, Melter O, Janecek J, Branny P. In situ detection of Bartonella henselae cells. Mol Cell Probes. 2002;16:49–56.PubMedGoogle Scholar
  28. 28.
    Gescher DM, Mallmann C, Kovacevic D, et al. A view on Bartonella quintana endocarditis – confirming the molecular diagnosis by specific fluorescence in situ hybridization. Diagn Microbiol Infect Dis. 2008;60:99–103.PubMedGoogle Scholar
  29. 29.
    Renesto P, Gouvernet J, Drancourt M, Roux V, Raoult D. Use of rpoB gene analysis for detection and identification of Bartonella species. J Clin Microbiol. 2001;39(2):430–437.PubMedGoogle Scholar
  30. 30.
    Bereswill S, Hinkelmann S, Kist M, Sander A. Molecular analysis of riboflavin sythesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR. J Clin Microbiol. 1999;37:3159–3166.PubMedGoogle Scholar
  31. 31.
    Johnson GM, Ayers M, McClure SCC, Richardson SE, Tellier R. Detection and identification of Bartonella species pathogenic for humans by PCR amplification targeting the riboflavin synthase gene (ribC). J Clin Microbiol. 2003;41(3):1069–1072.PubMedGoogle Scholar
  32. 32.
    Zeaiter Z, Fournier PE, Raoult D. Genomic variation of Bartonella henselae strains detected in lymph nodes of patients with cat scratch disease. J Clin Microbiol. 2002;40(3):1023–1030.PubMedGoogle Scholar
  33. 33.
    Diederen BMW, Vermeulen MJ, Verbakel H, van der Zee A, Bergmans A, Peeters MF. Evaluation of an internally controlled real-time polymerase chain reaction assay targeting the groEL gene for the detection of Bartonella spp. DNA in patients with suspected cat-scratch disease. Eur J Clin Microbiol Infect Dis. 2007;26:629–633.PubMedGoogle Scholar
  34. 34.
    Marth T. Whipple’s disease. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. 6th ed. Philadelphia, PA: Elsevier Inc; 2005:1306–1310.Google Scholar
  35. 35.
    Fenollar F, Puechal X, Raoult D. Whipple’s disease. N Engl J Med. 2007;356:55–66.PubMedGoogle Scholar
  36. 36.
    Alkan S, Beals TF, Schnitzer B. Primary diagnosis of Whipple disease manifesting as lymphadenopathy: use of polymerase chain reaction for detection of Tropheryma whippelii. Am J Clin Pathol. 2001;116(6):898–904.PubMedGoogle Scholar
  37. 37.
    Gras E, Matias-Guiu X, Garcia A, et al. PCR analysis in the pathological diagnosis of Whipple’s disease: emphasis on extraintestinal involvement or atypical morphological features. J Pathol. 1999;188:318–321.PubMedGoogle Scholar
  38. 38.
    Friedman HD, Hadfield TL, Lamy Y, Fritzinger D, Bonaventura M, Cynamon MT. Whipple’s disease presenting as chronic wastage and abdominal lymphadenopathy. Diagn Microbiol Infect Dis. 1995;23:111–113.PubMedGoogle Scholar
  39. 39.
    Finzi G, Franzi F, Sessa F, Mastaglio C, Capella C. Ultrastructural evidence of Tropheryma whippelii in PAS-negative granulomatous lymph nodes. Ultrastruct Pathol. 2007;31(2):169–172.PubMedGoogle Scholar
  40. 40.
    Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med. 1992;327:293.PubMedGoogle Scholar
  41. 41.
    Pron B, Poyart C, Abachin E, et al. Diagnosis and follow-up of Whipple’s disease by amplification of the 16S rRNA gene of Tropheryma whippeli. Eur J Clin Microbiol Infect Dis. 1999;18:62–65.PubMedGoogle Scholar
  42. 42.
    Razman NN, Loftus E Jr, Burgart LJ, et al. Diagnosis and monitoring of Whipple disease by polymerase chain reaction. Ann Intern Med. 1997;126(7):520–527.Google Scholar
  43. 43.
    Maibach RC, Altwegg M. Cloning and sequencing an unknown gene of Tropheryma whipplei and development of two LightCycler PCR assays. Diagn Microbiol Infect Dis. 2003;46:181–187.PubMedGoogle Scholar
  44. 44.
    Fredricks DN, Relman DA. Localization of Tropheryma whippelii rRNA in tissues from patients with Whipple’s disease. J Infect Dis. 2001;183:1229–1237.PubMedGoogle Scholar
  45. 45.
    Hinrikson HP, Dutly F, Altwegg M. Homogeneity of 16S–23S ribosomal intergenic spacer regions of Tropheryma whippelii in Swiss patients with Whipple’s disease. J Clin Microbiol. 1999;37(1):152–156.PubMedGoogle Scholar
  46. 46.
    Hinrikson HP, Dutly F, Altwegg M. Evaluation of a specific nested PCR targeting domain III of the 23S rRNA gene of “Tropheryma whippelii” and proposal of a classification system for its molecular variants. J Clin Microbiol. 2000;38(2):595–599.PubMedGoogle Scholar
  47. 47.
    Raoult D, Birg ML, La Scola B, et al. Cultivation of the bacillus of Whipple’s disease. N Engl J Med. 2000;342:620–625.PubMedGoogle Scholar
  48. 48.
    Ehrbar HU, Bauerfeind P, Dutly F, Koelz HR, Altwegg M. PCR-positive tests for Tropheryma whippeli in patients without Whipple’s disease. Lancet. 1999;353:2214.PubMedGoogle Scholar
  49. 49.
    Drancourt M, Carlioz A, Raoult D. rpoB sequence analysis of cultured Tropheryma whippelii. J Clin Microbiol. 2001;39(7):2425–2430.PubMedGoogle Scholar
  50. 50.
    Fenollar F, Fournier PE, Raoult D, Gerolami R, Lepidi H, Poyart C. Quantitative detection of Tropheryma whipplei DNA by real-time PCR. J Clin Microbiol. 2002;40(3):1119–1120.PubMedGoogle Scholar
  51. 51.
    Morgenegg S, Dutly F, Altwegg M. Cloning and sequencing of a part of the heat shock protein 65 gene (hsp65) of “Tropheryma whippelii” and its use for detection of “T. whippelii” in clinical specimens by PCR. J Clin Microbiol. 2000;38(6):2248–2253.PubMedGoogle Scholar
  52. 52.
    Sloan LM, Rosenblatt JE, Cockerill FR 3rd. Detection of Tropheryma whipplei DNA in clinical specimens by LightCycler real-time PCR. J Clin Microbiol. 2005;43(7):3516–3518.PubMedGoogle Scholar
  53. 53.
    Fenollar F, Fournier PE, Robert C, Raoult D. Use of genome selected repeated sequences increases the sensitivity of PCR detection of Tropheryma whipplei. J Clin Microbiol. 2004;42(1):401–403.PubMedGoogle Scholar
  54. 54.
    Müller SA, Vogt P, Altwegg M, Seebach JD. Deadly carousel or difficult interpretation of new diagnostic tools for Whipple’s disease: case report and review of the literature. Infection. 2005;33:39–42.PubMedGoogle Scholar
  55. 55.
    Sturm PDJ, Moodley P, Govender K, Bohlken L, Vanmali T, Sturm AW. Molecular diagnosis of lymphogranuloma venereum in patients with genital ulcer disease. J Clin Microbiol. 2005;43(6):2973–2975.PubMedGoogle Scholar
  56. 56.
    Stamm WE, Jones RB, Batteiger BE. Chlamydia trachomatis (trachoma, perinatal infections, lymphogranuloma venereum, and other genital infections). In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. 6th ed. Philadelphia, PA: Elsevier Inc; 2005:2239–2255.Google Scholar
  57. 57.
    Herring A, Richens J. Lymphogranuloma venereum. Sex Transm Infect. 2006;82(suppl 4):iv23-iv25.PubMedGoogle Scholar
  58. 58.
    Kapoor S. Re-emergence of lymphogranuloma venereum. J Eur Acad Dermatol Venereol. 2008;22:409–416.PubMedGoogle Scholar
  59. 59.
    Philpot CR. A case of cat scratch disease masquerading as lymphogranuloma venereum. Int J STD AIDS. 1999;10(10):694.PubMedGoogle Scholar
  60. 60.
    Maurin M, Raoult D. Isolation in endothelial cell cultures of Chlamydia trachomatis LGV (serovar L2) from a lymph node of a patient with suspected cat scratch disease. J Clin Microbiol. 2000;38(6):2062–2064.PubMedGoogle Scholar
  61. 61.
    Hadfield TL, Lamy Y, Wear DJ. Demonstration of Chlamydia trachomatis in inguinal lymphadenitis of lymphogranuloma venereum: a light microscopy, electron microscopy and polymerase chain reaction study. Mod Pathol. 1995;8(9):924–929.PubMedGoogle Scholar
  62. 62.
    Fredlund H, Falk L, Jurstrand M, Unemo M. Molecular genetic methods for diagnosis and characterization of Chlamydia trachomatis and Neisseria gonorrhoeae: impact on epidemiological surveillance and interventions. APMIS. 2004;112:771–784.PubMedGoogle Scholar
  63. 63.
    Weisburg WG, Barns SM, Palletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.PubMedGoogle Scholar
  64. 64.
    Lan J, Ossewaarde JM, Walboomers JMM, Meijer CJLM, van den Brule AJC. Improved PCR sensitivity for direct genotyping of Chlamydia trachomatis serovars by using a nested PCR. J Clin Microbiol. 1994;32(2):528–530.PubMedGoogle Scholar
  65. 65.
    Jalal H, Stephen H, Alexander S, Carne C, Sonnex C. Development of real-time PCR assays for genotyping of Chlamydia trachomatis. J Clin Microbiol. 2007;45(8):2649–2653.PubMedGoogle Scholar
  66. 66.
    Schaeffer A, Henrich B. Rapid detection of Chlamydia trachomatis and typing of the lymphogranuloma venereum associated L-serovars by TaqMan PCR. BMC Infect Dis. 2008;8:56.PubMedGoogle Scholar
  67. 67.
    Halse TA, Musser KA, Limberger RJ. A multiplexed real-time PCR assay for rapid detection of Chlamydia trachomatis and identification of serovar L-2, the major cause of lymphogranuloma venereum in New York. Mol Cell Probes. 2006;20(5):290–297.PubMedGoogle Scholar
  68. 68.
    Kellock DJ, Barlow R, Suvarna SK, Green S, Eley A, Rogstad KE. Lymphogranuloma venereum: biopsy, serology, and molecular biology. Genitourin Med. 1997;73(5):399–401.PubMedGoogle Scholar
  69. 69.
    Bauwens JE, Orlander H, Gomez MP, et al. Epidemic lymphogranuloma venereum during epidemics of crack cocaine use and HIV infection in the Bahamas. Sex Transm Dis. 2002;29(5):253–259.PubMedGoogle Scholar
  70. 70.
    Krosigk A, Meyer T, Jordan S, Graefe K, Plettenberg A, Stoehr A. Dramatic increase in lymphogranuloma venereum among homosexual men in Hamburg. J Dtsch Dermatol Ges. 2004;2(8):676–680.Google Scholar
  71. 71.
    Trebing D, Brunner M, Kroning Y, Seele P. Tumorous extragenital manifestation of lymphogranuloma venereum. J Dtsch Dermatol Ges. 2005;3(6):445–447.PubMedGoogle Scholar
  72. 72.
    Morre SA, Spaargaren J, Fennema JS, de Vries HJ, Coutinho RA, Pena AS. Real-time polymerase chain reaction to diagnose lymphogranuloma venereum. Emerg Infect Dis. 2005;11(8):1311–1312.PubMedGoogle Scholar
  73. 73.
    Spaargaren MSA, Fennema JS J, de Vries HJ. Molecular diagnosis of lymphogranuloma venereum: PCR-based restriction fragment length polymorphism and real-time PCR. J Clin Microbiol. 2005;43(10):5412–5413.PubMedGoogle Scholar
  74. 74.
    Martin IM, Alexander SA, Ison CA, Macdonald N, McCarthy K, Ward H. Diagnosis of lymphogranuloma venereum from biopsy samples. Gut. 2006;55(10):1522–1523.PubMedGoogle Scholar
  75. 75.
    Anonymous. Syphilitic lymphadenitis. Br Med J. 1970;4(5727):67.Google Scholar
  76. 76.
    O’Regan AW, Castro C, Lukehart SA, Kasznica JM, Rice PA, Joyce-Brady MF. Barking up the wrong tree? Use of polymerase chain reaction to diagnose syphilitic aortitis. Thorax. 2002;57:917–918.PubMedGoogle Scholar
  77. 77.
    Oddo D, Carrasco G, Capdeville F, Ayala MF. Syphilitic tonsillitis presenting as an ulcerated tonsillar tumor with ipsilateral lymphadenopathy. Ann Diagn Pathol. 2007;11:353–357.PubMedGoogle Scholar
  78. 78.
    Buffet M, Grange PA, Gerhardt P, et al. Dignosing Treponema pallidum in secondary syphilis by PCR and immunohistochemistry. J Invest Dermatol. 2007;127:2345–2350.PubMedGoogle Scholar
  79. 79.
    Behrhof W, Springer E, Bräuninger W, Kirkpatrick CJ, Weber A. PCR testing for Treponema pallidum in paraffin-embedded skin biopsy specimens: test design and impact on the diagnosis of syphilis. J Clin Pathol. 2008;61:390–395.PubMedGoogle Scholar
  80. 80.
    Burstain JM, Grimprel E, Lukehart SA, Norgard MV, Radolf JD. Sensitive detection of Treponema pallidum by using the polymerase chain reaction. J Clin Microbiol. 1991;29(1):62–69.PubMedGoogle Scholar
  81. 81.
    Orle KA, Gates CA, Martin DH, Body BA, Weiss JB. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol. 1996;34(1):49–54.PubMedGoogle Scholar
  82. 82.
    Zoechling N, Schluepen EM, Soyer HP, Kerl H, Volkenandt M. Molecular detection of Treponema pallidum in secondary and tertiary syphilis. Br J Dermatol. 1997;136:683–686.PubMedGoogle Scholar
  83. 83.
    Kouznetsov AV, Prinz JC. Molecular diagnosis of syphilis: the Schaudinn-Hoffmann lymph node biopsy. Lancet. 2002;360:388–389.PubMedGoogle Scholar
  84. 84.
    Kouzntsov AV, Weisenseel P, Trommler P, Multhaup S, Prinz JC. Detection of the 47-kilodalton membrane immunogen gene of Treponema pallidum in various tissue sources of patients with syphilis. Diagn Microbiol Infect Dis. 2005;51:143–145.Google Scholar
  85. 85.
    Centurion-Lara A, Castro C, Shaffer JM, van Voorhis WC, Marra CM, Lukehart SA. Detection of Treponema pallidum by a sensitive reverse transcriptase PCR. J Clin Microbiol. 1997;35(6):1348–1352.PubMedGoogle Scholar
  86. 86.
    Liu H, Rodes B, Chen CY, Steiner B. New test for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39(5):1941–1946.PubMedGoogle Scholar
  87. 87.
    Leslie DE, Azzato F, Karapanagiotidis T, Leydon J, Fyfe J. Development of a real-time PCR assay to detect Treponema pallidum in clinical specimens and assessment of the assay’s performance by comparison with serological testing. J Clin Microbiol. 2007;45(1):93–96.PubMedGoogle Scholar
  88. 88.
    Castro R, Prieto E, Aguas MJ, et al. Detection of Treponema pallidum sp. Pallidum DNA in latent syphilis. Int J STD AIDS. 2007;18:842–845.PubMedGoogle Scholar
  89. 89.
    Chen CY, Chi KH, George RW, et al. Diagnosis of gastric syphilis by direct immunofluorescence staining and real-time PCR testing. J Clin Microbiol. 2006;44(9):3452–3456.PubMedGoogle Scholar
  90. 90.
    Bruisten SM, Cairo I, Fennema H, et al. Diagnosing genital ulcer disease in a clinic for sexually transmitted diseases in Amsterdam, the Netherlands. J Clin Microbiol. 2001;39(2):601–605.PubMedGoogle Scholar
  91. 91.
    Renesto P, Lorvellec-Guillon K, Drancourt M, Raoult D. rpoB gene analysis as a novel strategy for identification of spirochetes from the genera Borrelia, Treponema, and Leptospira. J Clin Microbiol. 2000;38(6):2200–2203.PubMedGoogle Scholar
  92. 92.
    Inagaki H, Kawai T, Miyata M, Nagaya S, Tateyama H, Eimoto T. Gastric syphilis: polymerase chain reaction detection of treponemal DNA in pseudolymphomatous lesions. Hum Pathol. 1996;27(8):761–765.PubMedGoogle Scholar
  93. 93.
    Marin M, Munoz P, Sanchez M, et al. Molecular diagnosis of infective endocarditis by real-time broad-range polymerase chain reaction (PCR) and sequencing directly from heart valve tissue. Medicine. 2007;86(4):195–202.PubMedGoogle Scholar
  94. 94.
    Xu J, Millar BC, Moore JE, et al. Emplyment of broad-range 16S rRNA PCR to detect aetiological agents of infection from clinical specimens in patients ith acute meningitis – rapid separation of 16S rRNA PCR amplicons without the need for cloning. J Appl Microbiol. 2003;94:197–206.PubMedGoogle Scholar
  95. 95.
    Schabereiter-Gurtner C, Nehr M, Apfalter P, Makristathis A, Rotter ML, Hirschl AM. Evaluation of a protocol for molecular broad-range diagnosis of culture-negative bacterial infections in clinical routine diagnosis. J Appl Microbiol. 2007;104:1228–1237.PubMedGoogle Scholar
  96. 96.
    Odenthal M, Koenig S, Farbrother P, et al. Detection of opportunistic infections by low-density microarrays: a diagnostic approach for granulomatous lymphadenitis. Diagn Mol Pathol. 2007;16:18–26.PubMedGoogle Scholar
  97. 97.
    Vincent V, Gutierrez MC. Mycobacterium: laboratory characteristics of slowly growing mycobacteria. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, eds. Manual of Clinical Microbiology. 9th ed. Washington, DC: American Society for Microbiology; 2007:573–588.Google Scholar
  98. 98.
    Eisenach KD, Cave MD, Bates JH, Crawford JT. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis. 1990;161:977–981.PubMedGoogle Scholar
  99. 99.
    Diaz ML, Herrera T, Lopez-Vidal Y, et al. Polymerase chain reaction for the detection of Mycobacterium tuberculosis DNA in tissue and assessment of its utility in the diagnosis of hepatic granulomas. J Lab Clin Med. 1996;127:359–363.PubMedGoogle Scholar
  100. 100.
    Yang B, Koga H, Ohno H, et al. Detection of Mycobacterium tuberculosis in preserved tuberculous lymph nodes by polymerase chain reaction. Tohoku J Exp Med. 1998;184:123–131.PubMedGoogle Scholar
  101. 101.
    Hillemann D, Galle J, Vollmer E, Richter E. Real-time PCR assay for improved detection of Mycobacterium tuberculosis complex in paraffin-embedded tissues. Int J Tuberc Lung Dis. 2006;10(3):340–342.PubMedGoogle Scholar
  102. 102.
    Chakravorty S, Sen MK, Tyagi JS. Diagnosis of extrapulmonary tuberculosis by smear, culture, and PCR using universal sample processing technology. J Clin Microbiol. 2005;43(9):4357–4362.PubMedGoogle Scholar
  103. 103.
    Singh HB, Singh P, Jadaun GPS, et al. Simultaneous use of two PCR systems targeting IS6110 and MPB64 for confirmation of diagnosis of tuberculous lymphadenitis. J Commun Dis. 2006;38(3):274–279.PubMedGoogle Scholar
  104. 104.
    Heinmöller E, Renke B, Beyser K, Dietmaier W, Langner C, Rüschoff J. Pitfalls in diagnostic molecular pathology – significance of sampling error. Virchows Arch. 2001;439:504–511.PubMedGoogle Scholar
  105. 105.
    Kidane D, Olobo JO, Habte A, et al. Identification of the causative organism of tuberculous lymphadenitis in Ethiopia by PCR. J Clin Microbiol. 2002;40(11):4230–4234.PubMedGoogle Scholar
  106. 106.
    Gong G, Lee H, Kang GH, Shim Y, Huh J, Khang SK. Nested PCR for diagnosis of tuberculous lymphadenitis and PCR-SSCP for identification of rifampin resistance. In Delete – Jarzembowski JA, Young MB. Nontuberculous mycobacterial infections. Arch Pathol Lab Med. 2008;132:1333–1341.Google Scholar
  107. 107.
    Therese KL, Jayanthi U, Madhavan HN. Application of nested polymerase chain reaction (nPCR) using MPB 64 gene primers to detect Mycobacterium tuberculosis DNA in clinical specimens from extrapulmonary tuberculosis patients. Indian J Med Res. 2005;122:165–170.PubMedGoogle Scholar
  108. 108.
    Manitchotpisit B, Kunachak S, Kulapraditharom B, Sura T. Combined us of fine needle aspiration cytology and polymerase chain reaction in the diagnosis of cervical tuberculous lymphadenitis. J Med Assoc Thai. 1999;82(4):363–368.PubMedGoogle Scholar
  109. 109.
    Roth A, Reischl U, Streubel A, et al. Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S–23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol. 2000;38(3):1094–1104.PubMedGoogle Scholar
  110. 110.
    Baek CH, Kim SI, Ko YH, Chu KC. Polymerase chain reaction detection of Mycobacterium tuberculosis from fine-needle aspirate for the diagnosis of cervical tuberculous lymphadenitis. Laryngoscope. 2000;110:30–34.PubMedGoogle Scholar
  111. 111.
    Rimek D, Tyagi S, Kappe R. Performance of an IS6110-based PCR assay and the COBAS AMPLICOR MTB PCR system for detection of Mycobacterium tubercuosis complex DNA in human lymph node samples. J Clin Microbiol. 2002;40(8):3089–3092.PubMedGoogle Scholar
  112. 112.
    Osores F, Nolasco O, Verdonck K, et al. Clinical evaluation of a 16S ribosomal RNA polymerase chain reaction test for the diagnosis of lymph node tuberculosis. Clin Infect Dis. 2006;43:855–859.PubMedGoogle Scholar
  113. 113.
    Fernstrom MC, Dahlgren L, Ranby M, Forsgren A, Petrini B. Increased sensitivity of Mycobacterium tuberculosis Cobas Amplicor PCR following brief incubation of tissue samples on Löwenstein-Jensen substrate. APMIS. 2003;111:1114–1116.PubMedGoogle Scholar
  114. 114.
    O’Sullivan CE, Miller DR, Schneider PS, Roberts GD. Evaluation of Gen-Probe Amplified Mycobacterium tuberculosis Direct Test by using respiratory and nonrespiratory specimens in a tertiary care center laboratory. J Clin Microbiol. 2002;40(5):1723–1727.PubMedGoogle Scholar
  115. 115.
    Kerleguer A, Fabre M, Bernatas JJ, et al. Clinical evaluation of the Gen-Probe Amplified Mycobacterium tuberculosis Direct test for rapid diagnosis of tuberculous lymphadenitis. J Clin Microbiol. 2004;42(12):5921–5922.PubMedGoogle Scholar
  116. 116.
    Singh KK, Muralidhar M, Kumar A, et al. Comparison of in house polymerase chain reaction with conventional techniques for the detection of Mycobacterium tuberculosis DNA in granulomatous lymphadenopathy. J Clin Pathol. 2000;53:355–361.PubMedGoogle Scholar
  117. 117.
    Chantranuwat C, Assanasen T, Shuangshoti S, Sampatanukul P. Polymerase chain reaction for detection of Mycobacterium tuberculosis in Papanicolaou-stained fine needle aspirated smears fror diagnosis of cervical tuberculous lymphadenitis. Southeast Asian J Trop Med Public Health. 2006;37(5):940–947.PubMedGoogle Scholar
  118. 118.
    Gamboa F, Dominguez J, Padilla E, et al. Rapid diagnosis of extrapulmonary tuberculosis by ligase chain reaction amplification. J Clin Microbiol. 1998;36(5):1324–1329.PubMedGoogle Scholar
  119. 119.
    Goel MM, Ranjan V, Dhole TN, et al. Polymerase chain reaction vs. conventional diagnosis in fine needle aspirates of tuberculous lymph nodes. Acta Cytol. 2001;45:333–340.PubMedGoogle Scholar
  120. 120.
    Goel MM, Budhwar P, Goel M, Tiwari V, Jain A. Nucleic acid amplification of Mycobacterium tuberculosis complex DNA from archival fine needle aspiration smear scrapings vs. fresh fine needle aspirates of tuberculosis lymphadenitis. Acta Cytol. 2006;50(4):393–397.PubMedGoogle Scholar
  121. 121.
    Mizra S, Restrepo BI, McCormick JB, Fisher-Hoch SP. Diagnosis of tuberculosis lymphadenitis using a polymerase chain reaction on peripheral blood mononuclear cells. Am J Trop Med Hyg. 2003;69(5):461–465.Google Scholar
  122. 122.
    Williams DL, Gillis TP, Both RJ, Looker D, Watson JD. The use of a specific DNA probe and polymerase chain reaction for the detection of Mycobacterium leprae. J Infect Dis. 1990;162:193–200.PubMedGoogle Scholar
  123. 123.
    Chedore P, Broukhanski G, Shainhouse Z, Jamieson F. False-positive Amplified Mycobacterium tuberculosis Direct Test results for samples containing Mycobacterium leprae. J Clin Microbiol. 2006;44(2):612–613.PubMedGoogle Scholar
  124. 124.
    Hermon-Taylor J, Barnes N, Clarke C, Finlayson C. Mycobacterium paratuberculosis cervical lymphadenitis, followed five years later by terminal ileitis similar to Crohn’s disease. Br Med J. 1998;316:449–453.Google Scholar
  125. 125.
    Haas WH, Amthor B, Engelmann G, Rimek D, Bremer HJ. Preoperative diagnosis of Mycobacterium avium lymphadenitis in two immunocompetent children by polymerase chain reaction of gastric aspirates. Pediatr Infect Dis J. 1998;17(11):1016–1020.PubMedGoogle Scholar
  126. 126.
    Schulz S, Kremer M, Cabras AD, et al. Molecular diagnosis of a Mycobacterium chelonae infection. Pathol Res Pract. 2001;197:123–126.PubMedGoogle Scholar
  127. 127.
    Bruijnesteijn van Coppenraet LES, Kuijper EJ, Lindeboom JA, Prins JM, Claas ECJ. Mycobacterium haemophilum and lymphadenitis in children. Emerg Infect Dis. 2005;11(1):62–68.PubMedGoogle Scholar
  128. 128.
    Yan JJ, Chen FF, Jin YT, et al. Differentiation of BCG-induced lymphadenitis from tuberculosis in lymph node biopsy specimens by molecular analyses of pncA and oxyR. J Pathol. 1998;184:96–102.PubMedGoogle Scholar
  129. 129.
    Tötsch M, Böcker W, Brömmelkamp E, et al. Diagnostic value of different PCR assays for the detection of mycobacterial DNA in granulomatous lymphadenopathy. J Pathol. 1996;178:221–226.PubMedGoogle Scholar
  130. 130.
    Talbot EA, Williams DL, Frothingham R. PCR identification of mycobacterium bovis BCG. J Clin Microbiol. 1997;35(3):566–569.PubMedGoogle Scholar
  131. 131.
    Asano T, Aki K, Okada T, et al. Usefulness of DNA analysis of tuberculosis with ruptured lymphadenitis in a bacilli Calmette-Guérin-vaccinated infant. Pediatr Int. 2007;49:392–394.PubMedGoogle Scholar
  132. 132.
    Kirschner P, Springer B, Vogel U, et al. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol. 1993;31(11):2882–2889.PubMedGoogle Scholar
  133. 133.
    Bruijnesteijn van Coppenraet LES, Lindeboom JA, Prins JM, Peeters MF, Claas ECJ, Kuijper EJ. Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children. J Clin Microbiol. 2004;42(6):2644–2650.PubMedGoogle Scholar
  134. 134.
    Ghossein RA, Ross DG, Salomon RN, Rabson AR. Rapid detection and species identification of mycobacteria in paraffin-embedded tissues by polymerase chain reaction. Diagn Mol Pathol. 1992;1(3):185–191.PubMedGoogle Scholar
  135. 135.
    Cook SM, Bartos RE, Pierson CL, Frank TS. Detection and characterization of atypical mycobacteria by the polymerase chain reaction. Diagn Mol Pathol. 1994;3(1):53–58.PubMedGoogle Scholar
  136. 136.
    Rivasi F, Casali B, Nanetti A, Collina G, Mazzoni A. Histoplasma capsulatum var. capsulatum occurring in an HIV-positive Ghanaian immigrant to Italy: identification of H. capsulatum DNA by PCR from paraffin sample. APMIS. 2001;109:721–725.PubMedGoogle Scholar
  137. 137.
    Wheat LJ, Kauffman CA. Histoplasmosis. Infect Dis Clin North Am. 2003;17:1–19.PubMedGoogle Scholar
  138. 138.
    Hayden RT, Qian X, Roberts GD, Lloyd RV. In situ hybridization for the identification of yeastlike organisms in tissue section. Diagn Mol Pathol. 2001;10(1):15–23.PubMedGoogle Scholar
  139. 139.
    Bialek R, Feucht A, Aepinus C, et al. Evaluation of two nested PCR assays for detection of Histoplasma capsulatum DNA in human tissue. J Clin Microbiol. 2002;40(5):1644–1647.PubMedGoogle Scholar
  140. 140.
    Wheat LJ. Antigenic detection, serology, and molecular diagnosis of invasive mycoses in the immunocompromised host. Transpl Infect Dis. 2006;8:128–139.PubMedGoogle Scholar
  141. 141.
    Guiot HM, Bertran-Pasarell J, Tormos LM, et al. Ileal perforation and reactive hemophagocytic syndrome in a patient with disseminated histoplasmosis: the role of the real-time polymerase chain reaction in the diagnosis and successful treatment with amphotericin B lipid complex. Diagn Microbiol Infect Dis. 2007;57(4):429–433.PubMedGoogle Scholar
  142. 142.
    Bialek R, Ernst F, Dietz K, et al. Comparison of staining methods and a nested PCR assay to detect Histoplasma capsulatum in tissue sections. Am J Clin Pathol. 2002;117:597–603.PubMedGoogle Scholar
  143. 143.
    Maubon D, Simon S, Aznar C. Histoplasmosis diagnosis using a polymerase chain reaction method. Application on human samples in French Guiana, South America. Diagn Microbiol Infect Dis. 2007;58(4):441–444.PubMedGoogle Scholar
  144. 144.
    Bracca A, Tosello ME, Girardini JE, Amigot SL, Gomez C, Serra E. Molecular detection of Histoplasma capsulatum var. capsulatum in human clinical samples. J Clin Microbiol. 2003;41(4):1753–1755.PubMedGoogle Scholar
  145. 145.
    Guedes HLM, Guimaraes AJ, Muniz MM, et al. PCR assay for identification of Histoplasma capsulatum based on the nucleotide sequence of the M antigen. J Clin Microbiol. 2003;41(2):535–539.PubMedGoogle Scholar
  146. 146.
    Lau A, Chen A, Sorrell T, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol. 2007;45(2):380–385.PubMedGoogle Scholar
  147. 147.
    Martagon-Villamil J, Shrestha N, Sholtis M, et al. Identification of Histoplasma capsulatum from culture extracts by real-time PCR. J Clin Microbiol. 2003;41(3):1295–1298.PubMedGoogle Scholar
  148. 148.
    Collins MH, Jiang B, Croffie JM, Chong SKF, Lee CH. Hepatic granulomas in children: a clinicopathologic analysis of 23 cases including polymerase chain reaction for Histoplasma. Am J Surg Pathol. 1996;20(3):332–338.PubMedGoogle Scholar
  149. 149.
    Tseng TC, Liaw SJ, Hsiao CH, et al. Molecular evidence of recurrent histoplasmosis with 9-year latency in a patient with Addison’s disease. J Clin Microbiol. 2005;43(9):4911–4913.PubMedGoogle Scholar
  150. 150.
    Rickerts V, Bialek R, Tintelnot K, Jacobi V, Just-Nübling G. Rapid PCR-based diagnosis of disseminated histoplasmosis in an AIDS patient. Eur J Clin Microbiol Infect Dis. 2002;21:821–823.PubMedGoogle Scholar
  151. 151.
    Saubolle MA. Laboratory aspects in the diagnosis of coccidioidomycosis. Ann N Y Acad Sci. 2007;1111:301–314.PubMedGoogle Scholar
  152. 152.
    Blair JE. State-of-the-art treatment of coccidioidomycosis: skin and soft-tissue infections. Ann N Y Acad Sci. 2007;1111:411–421.PubMedGoogle Scholar
  153. 153.
    Hernandez JL, Echevarria S, Garcia-Valtuille A, Mazorra F, Salesa R. Atypical coccidioidomycosis in an AIDS patient successfully treated with fluconazole. Eur J Clin Microbiol Infect Dis. 1997;16:592–594.PubMedGoogle Scholar
  154. 154.
    Kaufman L, Valero G, Padhye AA. Misleading manifestations of Coccidioides immitis in vivo. J Clin Microbiol. 1998;36(12):3721–3723.PubMedGoogle Scholar
  155. 155.
    Bialek R, Kern J, Herrmann T, et al. PCR assays for identification of Coccidioides posadasii based on the nucleotide sequence of the antigen 2/proline-rich antigen. J Clin Microbiol. 2004;42(2):778–783.PubMedGoogle Scholar
  156. 156.
    de Aguiar Cordeiro R, Nogueira Brilhante RS, Gadelha Rocha MF, Araujo Moura FE, Pires de Camargo Z, Costa Sidrim JJ. Rapid diagnosis of coccidioidomycosis by nested PCR assay of sputum. Clin Microbiol Infect. 2007;13(4):449–51.PubMedGoogle Scholar
  157. 157.
    Johnson SM, Simmons KA, Pappagianis D. Amplification of coccidioidal DNA in clinical specimens by PCR. J Clin Microbiol. 2004;42(5):1982–1985.PubMedGoogle Scholar
  158. 158.
    Binnicker MJ, Buckwalter SP, Eisberner JJ, et al. Detection of Coccidioides species in clinical specimens by real-time PCR. J Clin Microbiol. 2007;45(1):173–178.PubMedGoogle Scholar
  159. 159.
    Gustafson KS, Feldman L. Cryptococcal lymphadenitis diagnosed by fine-needle aspiration biopsy. Diagn Cytopathol. 2007;35(2):103–104.PubMedGoogle Scholar
  160. 160.
    Mohanty SK, Vaiphei K, Dutta U, Singh K. Granulomatous cryptococcal lymphadenitis in immunocompetent individuals: report of two cases. Histopathology. 2003;42(1):96–97.PubMedGoogle Scholar
  161. 161.
    Bialek R, Weiss M, Bekure-Nemariam K, et al. Detection of Cryptococcus neoformans DNA in tissue samples by nested and real-time PCR assays. Clin Diagn Lab Immunol. 2002;9(2):461–469.PubMedGoogle Scholar
  162. 162.
    Tanaka KI, Miyazaki T, Maesaki S, et al. Detection of Cryptococcus neoformans gene in patients with pulmonary cryptococcosis. J Clin Microbiol. 1996;34(11):2826–2828.PubMedGoogle Scholar
  163. 163.
    Posteraro B, Sanguinetti M, Masucci L, Romano L, Morace G, Fadda G. Reverse cross blot hybridization assay for rapid detection of PCR-amplified DNA from Candida species, Cryptococcus neoformans, and Saccharomyces cerevisiae in clinical samples. J Clin Microbiol. 2000;38(4):1609–1614.PubMedGoogle Scholar
  164. 164.
    Martin C, Roberts D, van der Weide M, et al. Development of a PCR-based line probe assay for identification of fungal pathogens. J Clin Microbiol. 2000;38(10):3735–3742.PubMedGoogle Scholar
  165. 165.
    Zou CC, Yu ZS, Tang LF, Liang L, Zhao ZY. Primary abdominal lymphonodular cryptococcosis in children: 2 case reports and a literature review. J Pediatr Surg. 2006;41:E11-E15.PubMedGoogle Scholar
  166. 166.
    Takahashi T, Goto M, Kanda T, Iwamoto A. Utility of testing bronchoalveolar lavage fluid for cryptococcal ribosomal DNA. J Int Med Res. 2003;31:324–329.PubMedGoogle Scholar
  167. 167.
    Iwen PC, Hinrichs SH, Rupp ME. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol. 2002;40:87–109.PubMedGoogle Scholar
  168. 168.
    Hall L, Wohlfiel S, Roberts GD. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol. 2004;42(2):622–626.PubMedGoogle Scholar
  169. 169.
    Pryce TM, Palladino S, Price DM, et al. Rapid identification of fungal pathogens in BacT/ALERT, BACTEC, and BBL MGIT media using polymerase chain reaction and DNA sequencing of the internal transcribed spacer regions. Diagn Microbiol Infect Dis. 2006;54:289–297.PubMedGoogle Scholar
  170. 170.
    Sandhu GS, Kline BC, Stockman L, Roberts GD. Molecular probes for diagnosis of fungal infections. J Clin Microbiol. 1995;33(11):2913–2919.PubMedGoogle Scholar
  171. 171.
    Imhof A, Schaer C, Schoedon G, et al. Rapid detection of pathogenic fungi from clinical specimens using LightCycler real-time fluorescence PCR. Eur J Clin Microbiol Infect Dis. 2003;22:558–560.PubMedGoogle Scholar
  172. 172.
    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols: A Guide to Methods and Applications. San Diego, Ca: Academic Press; 1990:315–322.Google Scholar
  173. 173.
    Hendolin PH, Paulin L, Koukila-Kahkola P, et al. Panfungal PCR and multiplex liquid hybridization for detection of fungi in tissue specimens. J Clin Microbiol. 2000;38(11):4186–4192.PubMedGoogle Scholar
  174. 174.
    Lindsley MD, Hurst SF, Iqbal NJ, Morrison CJ. Rapid identification of dimorphic and yeast-like fungal pathogens using specific DNA probes. J Clin Microbiol. 2001;39(10):3505–3511.PubMedGoogle Scholar
  175. 175.
    Zaharopoulos P. Demonstration of parasites in toxoplasma lymphadenitis by fine-needle aspiration cytology: report of two cases. Diagn Cytopathol. 2000;22(1):11–15.PubMedGoogle Scholar
  176. 176.
    Eapen M, Mathew FF, Aravindan KP. Evidence based criteria for the histopathological diagnosis of toxoplasmic lymphadenopathy. J Clin Pathol. 2005;58:1143–1146.PubMedGoogle Scholar
  177. 177.
    Argyle JC, Schumann GB, Kjeldsberg CR, Athens JW. Identification of a toxoplasma cyst by fine-needle aspiration. Am J Clin Pathol. 1983;80(2):256–258.PubMedGoogle Scholar
  178. 178.
    Pathan SK, Francis IM, Das DK, Mallik MK, Sheikh ZA, Hira PR. Fine needle aspiration cytologic diagnosis of toxoplasma lymphadenitis. A case report with detection of a Toxoplasma bradycyst in a Papanicolaou-stained smear. Acta Cytol. 2003;47(2):299–303.PubMedGoogle Scholar
  179. 179.
    Montoya JG. Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J Infect Dis. 2002;185(suppl 1):S73-S82.PubMedGoogle Scholar
  180. 180.
    Switaj K, Master A, Skrzypczak M, Zaborowski P. Recent trends in molecular diagnostics for Toxoplasma gondii infections. Clin Microbiol Infect. 2005;11:170–176.PubMedGoogle Scholar
  181. 181.
    Burg JL, Grover CM, Pouletty P, Boothroyd JC. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol. 1989;27(8):1787–1792.PubMedGoogle Scholar
  182. 182.
    Khalifa KES, Roth A, Roth B, Arasteh KN, Janitschke K. Value of PCR for evaluating occurrence of parasitemia in immunocompromised patients with cerebral and extracerebral toxoplasmosis. J Clin Microbiol. 1994;32(11):2813–2819.Google Scholar
  183. 183.
    Lin MH, Chen TC, Kuo TT, Tseng CC, Tseng CP. Real-time PCR for quantitative detection of Toxoplasma gondii. J Clin Microbiol. 2000;38:11.Google Scholar
  184. 184.
    Kompalic-Cristo A, Frotta C, Suarez-Mutis M, Fernandes O, Britto C. Evaluation of a real-time PCR assay based on the repetitive B1 gene for the detection of Toxoplasma gondii in human peripheral blood. Parasitol Res. 2007;101:619–625.PubMedGoogle Scholar
  185. 185.
    Homan WL, Vercammen M, De Braekeleer J, Verschueren H. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol. 2000;30:69–75.PubMedGoogle Scholar
  186. 186.
    Edvinsson B, Lappalainen M, Evengard B. Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clin Microbiol Infect. 2006;12:131–136.PubMedGoogle Scholar
  187. 187.
    Petersen E, Edvinsson B, Lundgren B, Benfield T. Diagnosis of pulmonary infection with Toxoplasma gondii in immunocompromised HIV-positive patients by real-time PCR. Eur J Clin Microbiol Infect Dis. 2006;25:401–404.PubMedGoogle Scholar
  188. 188.
    Cassaing S, Bessieres MH, Berry A, Berrebi A, Fabre R, Magnaval JF. Comparison between two amplification sets for molecular diagnosis of toxoplasmosis by real-time PCR. J Clin Microbiol. 2006;44(3):720–724.PubMedGoogle Scholar
  189. 189.
    Hierl T, Reischl U, Lang P, et al. Preliminary evaluation of one conventional nested and two real-time PCr assays for the detection of Toxoplasma gondii in immunocompromised patients. J Med Microbiol. 2004;53:629–632.PubMedGoogle Scholar
  190. 190.
    Contini C, Cultrera R, Seraceni S, et al. The role of stage-specific oligonucleotide primers in providing effective laboratory support for the molecular diagnosis of reactivated Toxoplasma gondii encephalitis in patients with AIDS. J Med Microbiol. 2002;51:879–890.PubMedGoogle Scholar
  191. 191.
    Weiss LM, Chen YY, Berry GJ, Strickler JG, Dorfman RF, Warnke RA. Infrequent detection of Toxoplasma gondii genome in toxoplasmic lymphadenitis. Hum Pathol. 1992;23(2):154–158.PubMedGoogle Scholar
  192. 192.
    Lin MH, Kuo TT. Specificity of the histopathological triad for the diagnosis of toxoplasmic lymphadenitis: polymerase chain reaction study. Pathol Int. 2001;51:619–623.PubMedGoogle Scholar
  193. 193.
    Guy EC, Joynson DH. Potential of the polymerase chain reaction in the diagnosis of active Toxoplasma infection by detection of parasite in blood. J Infect Dis. 1995;172(1):319–322.PubMedGoogle Scholar
  194. 194.
    Contini C, Giuliodori M, Cultrera R, Seraceni S. Detection of clinical-stage specific molecular Toxoplasma gondii gene patterns in patients with toxoplasmic lymphadenitis. J Med Microbiol. 2006;55:771–774.PubMedGoogle Scholar
  195. 195.
    Angel SO, Matrajt M, Margarit J, et al. Screening for active toxoplasmosis in patients by DNA hybridization with the ABGTg7 probe in blood samples. J Clin Microbiol. 1997;35(3):591–595.PubMedGoogle Scholar
  196. 196.
    Harms G, Fraga F, Batroff B, Oliveira F, Feldmeier H. Cutaneous leishmaniasis associated with extensive lymphadenopathy during an epidemic in Ceara State, northeast Brazil. Acta Trop. 2005;93:303–310.PubMedGoogle Scholar
  197. 197.
    Daneshbod K. lymphadenitis due to leishmania simulating toxoplasmosis. Value of electron microscopy for differentiation. Am J Clin Pathol. 1978;69(4):462–467.PubMedGoogle Scholar
  198. 198.
    Daneshbod Y, Daneshbod K, Khademi B, Negahban S, Bedayat GR. New cytologic clues in localized Leishmania lymphadenitis. Acta Cytol. 2007;51(5):699–710.PubMedGoogle Scholar
  199. 199.
    Mathis A, Deplazes P. PCR and in vitro cultivation for detection of Leishmania spp. in diagnostic samples from humans and dogs. J Clin Microbiol. 1995;33(5):1145–1149.PubMedGoogle Scholar
  200. 200.
    Reithinger R, Dujardin JC. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007;45(1):21–25.PubMedGoogle Scholar
  201. 201.
    Andresen K, Gasim S, El-Hassan AM, et al. Diagnosis of visceral leishmaniasis by the polymerase chain reaction using blood, bone marrow and lymph node samples from patients from the Sudan. Trop Med Int Health. 1997;2(5):40–444.Google Scholar
  202. 202.
    Tupperwar N, Vineeth V, Rath S, Vaidya T. Development of a real-time polymerase chain reaction assay for the quantification of Leishmania species and the monitoring of systemic distribution of the pathogen. Diagn Microbiol Infect Dis. 2008;61:23–30.PubMedGoogle Scholar
  203. 203.
    Osman OF, Oskam L, Zijlstra EE, et al. Evaluation of PCR for diagnosis of visceral leishmaniasis. J Clin Microbiol. 1997;35(10):2454–2457.PubMedGoogle Scholar
  204. 204.
    Osman OF, Oskam L, Kroon NCM, et al. Use of PCR for diagnosis of post-kala-azar dermal leishmaniasis. J Clin Microbiol. 1998;36(6):1621–1624.PubMedGoogle Scholar
  205. 205.
    Osman OF, Oskam L, Zijlstra EE, El-Hassan AM, El-Naeim DA, Kager PA. Use of the polymerase chain reaction to assess the success of visceral leishmaniasis treatment. Trans R Soc Trop Med Hyg. 1998;92:397–400.PubMedGoogle Scholar
  206. 206.
    Patterson SD, Larson EB, Corey L. Atypical generalized zoster with lymphadenitis mimicking lymphoma. N Engl J Med. 1980;302(15):848–851.PubMedGoogle Scholar
  207. 207.
    Dorfman RF, Warnke R. Lymphadenopathy simulating the malignant lymphomas. Hum Pathol. 1974;5(5):519–550.PubMedGoogle Scholar
  208. 208.
    Witt MD, Torno MS, Sun N, Stein T. Herpes simplex virus lymphadenitis: case report and review of the literature. Clin Infect Dis. 2002;34:1–6.PubMedGoogle Scholar
  209. 209.
    Gaffey MJ, Ben-Ezra JM, Weiss LM. Herpes simplex lymphadenitis. Am J Clin Pathol. 1991;95:709–714.PubMedGoogle Scholar
  210. 210.
    Tamaru J, Mikata A, Horie H, et al. Herpes simplex lymphadenitis. Am J Surg Pathol. 1990;14(6):571–577.PubMedGoogle Scholar
  211. 211.
    Sumiyoshi Y, Kikuchi M, Ohshima K, Takeshita M, Eizuru Y, Minamishima Y. A case of human herpesvirus-6 lymphadenitis with infectious mononucleosis-like syndrome. Pathol Int. 1995;45(12):947–951.PubMedGoogle Scholar
  212. 212.
    Maric I, Bryant R, Abu-Asab M, et al. Human herpesvirus-6-associated acute lymphadenitis in immunocompromised adults. Mod Pathol. 2004;17:1427–1433.PubMedGoogle Scholar
  213. 213.
    Toyabe S, Harada W, Suzuki H, Hirokawa T, Uchiyama M. Large vessel arteritis associated with human herpesvirus 6 infections. Clin Rheumatol. 2002;21:528–532.PubMedGoogle Scholar
  214. 214.
    Norton RA, Caserta MT, Hall CB, Schnabel K, Hocknell P, Dewhurst S. Detection of human herpesvirus 6 by reverse transcription-PCR. J Clin Microbiol. 1999;37(11):3672–3675.PubMedGoogle Scholar
  215. 215.
    Chen T, Hudnall SD. Anatomical mapping of human herpesvirus reservoirs of infection. Mod Pathol. 2006;19:726–737.PubMedGoogle Scholar
  216. 216.
    Niedobitek G, Herbst H, Young LS, et al. Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. Blood. 1992;79:2520–2526.PubMedGoogle Scholar
  217. 217.
    Boroskin YS, Moore P, Murday AJ, Booth JC, Butcher PD. Human cytomegalovirus genome sequences in lymph nodes. Microbes Infect. 1999;1:279–283.Google Scholar
  218. 218.
    Kempf W, Müller B, Maurer R, Adams V, Campadelli Fiume G. Increased expression of human herpesvirus 7 in lymphoid organs of AIDS patients. J Clin Virol. 2000;16:193–201.PubMedGoogle Scholar
  219. 219.
    Stejskal J. Measles lymphadenopathy. Ultrastruct Pathol. 1980;1:243–247.PubMedGoogle Scholar
  220. 220.
    Pahlitzsch R, Hammarin AL, Widell A. A case of facial cellulitis and necrotizing lymphadenitis due to cowpox virus infection. Clin Infect Dis. 2006;43:737–742.PubMedGoogle Scholar
  221. 221.
    Cho KJ, Lee SS, Khang SK. Histiocytic necrotizing lymphadenitis – a clinicopathologic study of 45 cases with in situ hybridization for Epstein-Barr virus and hepatitis B virus. J Korean Med Sci. 1996;11(5):409–411.PubMedGoogle Scholar
  222. 222.
    Huh J, Chi HS, Kim SS, Gong G. A study of the viral etiology of histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease). J Korean Med Sci. 1998;13:27–30.PubMedGoogle Scholar
  223. 223.
    Yen A, Fearneyhough P, Raimer SS, Hudnall SD. EBV-associated Kikuchi’s histiocytic necrotizing lymphadenitis with cutaneous manifestations. J Am Acad Dermatol. 1997;36:342–346.PubMedGoogle Scholar
  224. 224.
    Stephan JL, Jeannoel P, Chanoz J, Gentil-Perret A. Epstein-Barr virus-associated Kikuchi disease in two children. J Pediatr Hematol Oncol. 2001;23(4):240–243.PubMedGoogle Scholar
  225. 225.
    Chiu CF, Chow KC, Lin TY, Tsai MH, Shih CM, Chen LM. Virus infection in patients with histiocytic necrotizing lymphadenitis in Taiwan. Am J Clin Pathol. 2000;113:774–781.PubMedGoogle Scholar
  226. 226.
    Hollingsworth HC, Peiper SC, Weiss LM, Raffeld M, Jaffe ES. An investigation of the viral pathogenesis of Kikuchi-Fujimoto disease. Arch Pathol Lab Med. 1994;118:134–140.PubMedGoogle Scholar
  227. 227.
    Anagnostopoulos I, Hummel M, Korbjuhn P, Papadaki T, Anagnostou D, Stein H. Epstin-Barr virus in Kikuchi-Fujimoto disease. Lancet. 1993;341:893.PubMedGoogle Scholar
  228. 228.
    Sumiyoshi Y, Kikuchi M, Minematu T, Ohshima K, Takeshita M, Minamishima Y. Analysis of herpesvirus genomes in Kikuchi’s disease. Virchows Arch. 1994;424:437–440.PubMedGoogle Scholar
  229. 229.
    Takano Y, Saegusa M, Okudaira M. Pathologic analyses of non-overt necrotizing type Kikuchi and Fujimoto’s disease. Acta Pathol Jpn. 1993;43(11):635–645.PubMedGoogle Scholar
  230. 230.
    Krueger GRF, Huetter ML, Rojo J, Romero M, Cruz-Ortiz H. Human herpesviruses HHV-4 (EBV) and HHV-6 in Hodgkin’s and Kikuchi’s diseases and their relation to proliferation and apoptosis. Anticancer Res. 2001;21:2155–2162.PubMedGoogle Scholar
  231. 231.
    Sumiyoshi Y, Kikuchi M, Ohshima K, et al. Human herpesvirus-6 genomes in histiocytic necrotizing lymphadenitis (Kikuchi’s disease) and other forms of lymphadenitis. Am J Clin Pathol. 1993;99:609–614.PubMedGoogle Scholar
  232. 232.
    Maeda N, Yamashita Y, Kimura H, Hara S, Mori N. Quantitative analysis of herpesvirus load in the lymph nodes of patients with histiocytic necrotizing lymphadenitis using a real-time PCR assay. Diagn Mol Pathol. 2006;15(1):49–55.PubMedGoogle Scholar
  233. 233.
    Cho MS, Choi HJ, Park HK, Cho SE, Han WS, Yang WI. Questionable role of human herpesviruses in the pathogenesis of Kikuchi disease. Arch Pathol Lab Med. 2007;131:604–609.PubMedGoogle Scholar
  234. 234.
    Dominguez DC, Torres ML, Antony S. In human herpesvirus 6 linked to Kikuchi-Fujimoto disease? The importance of consistent molecular and serologic analysis. South Med J. 2003;96(3):226–233.PubMedGoogle Scholar
  235. 235.
    Huh J, Kang GH, Gong G, Kim SS, Ro JY, Kim CW. Kaposi’s sarcoma-associated herpesvirus in Kikuchi’s disease. Hum Pathol. 1998;29(10):1091–1096.PubMedGoogle Scholar
  236. 236.
    George TI, Jones CD, Zehnder JL, Warnke RA, Dorfman RF. Lack of human herpesvirus 8 and Epstein-Barr virus in Kikuchi’s histiocytic necrotizing lymphadenitis. Hum Pathol. 2003;34(2):130–135.PubMedGoogle Scholar
  237. 237.
    Martinez-Vasquez C, Potel C, Angulo M, et al. Nosocomial Kikuchi’s disease – a search for herpesvirus sequences in lymph node tissues using PCR. Infection. 2001;29:143–147.Google Scholar
  238. 238.
    Bataille V, Harland CC, Behrens J, Cook MG, Holden CA. Kikuchi disease (histiocytic necrotizing lymphadenitis) in association with HTLV1. Br J Dermatol. 1997;136:610–612.PubMedGoogle Scholar
  239. 239.
    Zhang WP, Wang JH, Wang WQ, et al. An association between parvovirus B19 and Kikuchi-Fujimoto disease. Viral Immunol. 2007;20(3):421–428.PubMedGoogle Scholar
  240. 240.
    Chung JY, Kim SW, Han TH, Lim SJ. Detection of the Bartonella henselae gene sequence in lymph nodes of children with Kikuchi’s disease. Pediatrics. 2005;115(4):112.Google Scholar
  241. 241.
    Abuel-Haija M, Hurford MT. Kimura disease. Arch Pathol Lab Med. 2007;131:650–651.PubMedGoogle Scholar
  242. 242.
    Chen H, Thompson LDR, Aguilera NSI, Abbondanzo SL. Kimura disease: a clinicopathologic study of 21 cases. Am J Surg Pathol. 2004;28(4):505–513.PubMedGoogle Scholar
  243. 243.
    Ramchandani PL, Sabesan T, Hussein K. Angiolymphoid hyperplasia with eosinophilia masquerading as Kimura disease. Br J Oral Maxillofac Surg. 2005;43:249–252.PubMedGoogle Scholar
  244. 244.
    Jang KA, Ahn SJ, Choi JH, et al. Polymerase chain reaction (PCR) for human herpesvirus 8 and heteroduplex PCR for clonality assessment in angiolymphoid hyperplasia with eosinophilia and Kimura’s disease. J Cutan Pathol. 2001;28:363–367.PubMedGoogle Scholar
  245. 245.
    Nagore E, Llorca J, Sanchez-Motilla JM, Ledesma E, Fortea JM, Aliaga A. Detection of Epstein-Barr virus DNA in a patient with Kimura’s disease. Int J Dermatol. 2001;39(8):618–620.Google Scholar
  246. 246.
    Tham KT, Leung PC, Saw D, Gwi E. Kimura’s disease with salivary gland involvement. Br J Surg. 1981;68:495–497.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kristin Fiebelkorn
    • 1
  1. 1.Department of PathologyThe University of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations